New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

lvt-eval

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

lvt-eval

lvt evaluation of image object detrction and image classification.

  • 0.0.2
  • PyPI
  • Socket score

Maintainers
1

lvt-eval

Installation
  1. python>=3.8, (windows: need c++ env, https://airesources.oss-cn-hangzhou.aliyuncs.com/jkl/%E8%BE%B9%E7%BC%98%E5%8D%A1/VisualStudioSetup.exe)

  2. pip install pybind11 -i https://pypi.tuna.tsinghua.edu.cn/simple

  3. pip install -e faster_coco_eval/ -i https://pypi.tuna.tsinghua.edu.cn/simple

  4. pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

Lvt-eval guideline
  • studio aiport
  1. write your config files in "config/{your config files}.json".
For example:
1) multi-object(studio json) vs. multi-object(interface return label) detection:
{
    "label":[{"objectLabel":["烟"], "attrLabel":[], "id":0, "prediction":"smoke"},{"objectLabel":["火"], "attrLabel":[], "id":1, "prediction":"fire"}],
    "aiport": "http://192.1.2.238:8893/vql/v1/serving/process",
    "rawdata": "data/yh.json",
    "draw": false,
    "download": false,
    "raw_prediction_path": "prediction_dirs/raw_predictions_8893.json",
    "save_gt_coco": "gt_dirs/coco_groundtruth.json",
    "save_pred_path": "prediction_dirs/prediction_results.json",
    "faster_coco_api": true
}

2) multi-object(studio json) vs. single-object(interface return label) detection:
{
    "label":[{"objectLabel":["人"], "attrLabel":["躺", "趴"], "id":0, "prediction":"睡岗"}],
    "aiport": "http://192.1.2.238:8324/vql/v1/serving/process",
    "rawdata": "data/sleep_test_json_0621.json",
    "draw": false,
    "download": false,
    "raw_prediction_path": "prediction_dirs/raw_predictions_8324.json",
    "save_gt_coco": "gt_dirs/coco_groundtruth.json",
    "save_pred_path": "prediction_dirs/prediction_results.json",
    "faster_coco_api": true
}

3) single-object(studio json) vs. single-object(interface return label) detection:
{
    "label":[{"objectLabel":["person"], "attrLabel":[], "id":0, "prediction":"person"}],
    "aiport": "http://192.1.2.238:8312/vql/v1/serving/process",
    "rawdata": "data/xingren.json",
    "draw": false,
    "download": false,
    "raw_prediction_path": "prediction_dirs/raw_predictions_8312.json",
    "save_gt_coco": "gt_dirs/coco_groundtruth.json",
    "save_pred_path": "prediction_dirs/prediction_results.json",
    "faster_coco_api": false
}
"label":
    "objectLabel": enter the obj tags of studio json 
    "attrLabel": enter the attr tags of studio json (same the obj tags)
    "id": default is 0. 
    "prediction": label of original outputs of interface 
"aiport": model interface
"rawdata": studio json format data
"draw": "true" means draw GT and Pred bbox
"download": download images, if draw=True, need download=True
"raw_prediction_path": save original outputs of interface, file name "raw_predictions_{model interface id}.json"
"save_gt_coco": save studio json format to coco json format
"save_pred_path": save original outputs of interface to coco json format
"faster_coco_api": "true" means use faster coco evaluation
  1. then run
python od_evaluator.py --mode studio_json --config {your config files} 
  • coco json
  1. prepare your data (coco json format) prepare groundtruth and prediction json.

  2. then run

python od_evaluator.py --mode coco_json --gt_json {your gt coco format json}  --pred_json {your pred coco format json} 
or
python od_evaluator.py --mode faster_coco_json --gt_json {your gt coco format json} --pred_json {your pred coco format json} 
How to start (example)
  1. use mode = studio aiport: python od_evaluator.py --mode studio_json --config config/config_xingren.json
  2. use mode = coco json: python od_evaluator.py --mode coco_json --gt_json example_data/only_no_glove.json --pred_json example_data/only_no_glove_pred.json
  3. use mode = faster coco json: python od_evaluator.py --mode faster_coco_json --gt_json example_data/only_no_glove.json --pred_json example_data/only_no_glove_pred.json

update pypi

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc