Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

microservice-story-manager

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

microservice-story-manager

Microservice Story Manager is a Python library for optimizing user story assignments in microservice architectures. It features story and microservice management, genetic algorithm optimization, and visualization tools. The library calculates metrics like coupling and cohesion, allows comparison of optimization strategies, and supports CSV data loading. It aids in microservice design decisions, helping maximize cohesion and minimize coupling in software architectures.

  • 0.2.0
  • PyPI
  • Socket score

Maintainers
1

Microservice Story Manager

Microservice Story Manager is a Python library for managing user stories and microservices, optimizing story assignments, and visualizing microservice dependencies. It provides tools for organizing user stories, assigning them to microservices, and optimizing these assignments using various algorithms.

Features

  • User Story Management: Create, store, and manage user stories with detailed attributes.
  • Microservice Management: Organize user stories into microservices.
  • Dependency Visualization: Visualize dependencies between microservices based on user story relationships.
  • Genetic Algorithm Assignment: Optimize the assignment of user stories to microservices using genetic algorithms.
  • Customizable Fitness Functions: Define your own criteria for optimal story distribution.
  • Multi-language Support: Error messages available in multiple languages.
  • Metrics Calculation: Calculate various metrics such as coupling, cohesion, granularity, complexity, and semantic similarity.
  • Comparative Analysis: Compare different fitness functions and their impact on microservice architecture.
  • Detailed Visualization: View microservices with their assigned stories, including identifiers and titles.
  • Particle Swarm Optimization: Alternative method for optimizing story assignments using particle swarm optimization.

Installation

You can install the Microservice Story Manager using pip:

Installation

You can install the Microservice Story Manager using pip:

pip install microservice-story-manager

Quickstart

Here's a quick example of how to use the Microservice Story Manager to manage user stories and optimize their assignment to microservices:

from microservice_story_manager import UserStoryManager, MicroserviceManager, MicroserviceVisualizer, GeneticMicroserviceAssigner, FitnessFunctions, MetricsVisualizer

# Initialize managers
user_story_manager = UserStoryManager()
user_story_manager.load_stories_from_csv('path/to/your/stories.csv')

microservice_manager = MicroserviceManager(user_story_manager)

# Create microservices
for _ in range(5):
    microservice_manager.create_microservice()

# Create FitnessFunctions instance
fitness_functions = FitnessFunctions(MicroserviceMetricsManager(microservice_manager))

# Choose fitness functions to compare
functions_to_compare = [
    (fitness_functions.f1, "f1", True),
    (fitness_functions.f2, "f2", True)
]

results = []

for func, name, minimize in functions_to_compare:
    assigner = GeneticMicroserviceAssigner(user_story_manager, microservice_manager, func, minimize)
    optimized_manager, fitness_value, detailed_metrics, story_assignments = assigner.optimize_assignments(generations=20, population_size=50)
    results.append((name, optimized_manager, fitness_value, detailed_metrics, story_assignments))

    print(f"\nResults for fitness function {name}:")
    print(f"Best fitness: {fitness_value}")
    print(f"Detailed metrics: {detailed_metrics}")
    print("\nStory Assignments:")
    for ms_id, stories in story_assignments.items():
        print(f"\nMicroservice {ms_id}:")
        for story in stories:
            print(f"  - {story}")

# Compare metrics
MetricsVisualizer.compare_metrics(results[0][3], results[1][3], results[0][0], results[1][0])

# Compare fitness values
MetricsVisualizer.compare_fitness_values([result[2] for result in results], [result[0] for result in results])

# Visualize the optimized microservices
for name, manager, _, _, _ in results:
    visualizer = MicroserviceVisualizer(manager)
    visualizer.plot_microservices(title=f"Optimized Microservices using {name}")

Detailed Usage

User Story Management

The UserStoryManager class is used to create, store, and manage user stories. You can create user stories manually or load them from a CSV file. Here's an example of how to create a user story:

user_story_manager = UserStoryManager()
user_story_manager.load_stories_from_csv('stories.csv')

Microservice Management

The MicroserviceManager class is used to organize user stories into microservices. You can create microservices manually or let the manager create them for you. Here's an example of how to create microservices:

microservice_manager = MicroserviceManager(user_story_manager)
ms_id = microservice_manager.create_microservice()
microservice_manager.add_story_to_microservice(ms_id, story_id)

Genetic Microservice Assigner

The GeneticMicroserviceAssigner class is used to optimize the assignment of user stories to microservices using genetic algorithms. You can define your own fitness function to determine the optimal assignment. Here's an example of how to use the assigner:

assigner = GeneticMicroserviceAssigner(user_story_manager, microservice_manager)
assigner.optimize_assignment(fitness_function, population_size=100, generations=50)

Particle Swarm Optimization

The ParticleSwarmOptimization class is an alternative method for optimizing story assignments. You can use it in place of the genetic algorithm assigner. Here's an example of how to use the particle swarm optimization:

pso_assigner = PSOMicroserviceAssigner(user_story_manager, microservice_manager)
best_particle = pso_assigner.optimize_assignment(population_size=50, generations=100)
pso_assigner.assign_stories_to_microservices(best_particle)

Microservice Visualizer

The MicroserviceVisualizer class is used to visualize the dependencies between microservices based on user story relationships. Here's an example of how to use the visualizer:

visualizer = MicroserviceVisualizer(microservice_manager)
visualizer.plot_microservices(base_color='lightblue')

Customization

You can customize various aspects of the library:

  • Define your own fitness functions for optimization algorithms.
  • Adjust visualization parameters like colors and node sizes.
  • Implement additional optimization algorithms.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

This project is licensed under the MIT License - see the LICENSE file for details.

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc