Security News
Fluent Assertions Faces Backlash After Abandoning Open Source Licensing
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
pip install --upgrade pymilvus milvus-haystack
Use the MilvusDocumentStore
in a Haystack pipeline as a quick start.
from haystack import Document
from milvus_haystack import MilvusDocumentStore
document_store = MilvusDocumentStore(
connection_args={"uri": "./milvus.db"},
drop_old=True,
)
documents = [Document(
content="A Foo Document",
meta={"page": "100", "chapter": "intro"},
embedding=[-10.0] * 128,
)]
document_store.write_documents(documents)
print(document_store.count_documents()) # 1
document_store = MilvusDocumentStore(
connection_args={"uri": "./milvus.db"},
drop_old=True,
)
document_store = MilvusDocumentStore(
connection_args={"uri": "http://localhost:19530"},
drop_old=True,
)
from haystack.utils import Secret
document_store = MilvusDocumentStore(
connection_args={
"uri": "https://in03-ba4234asae.api.gcp-us-west1.zillizcloud.com", # Your Public Endpoint
"token": Secret.from_env_var("ZILLIZ_CLOUD_API_KEY"), # API key, we recommend using the Secret class to load the token from env variable for security.
"secure": True
},
drop_old=True,
)
Prepare an OpenAI API key and set it as an environment variable:
export OPENAI_API_KEY=<your_api_key>
import glob
import os
from haystack import Pipeline
from haystack.components.converters import MarkdownToDocument
from haystack.components.embedders import OpenAIDocumentEmbedder, OpenAITextEmbedder
from haystack.components.preprocessors import DocumentSplitter
from haystack.components.writers import DocumentWriter
from milvus_haystack import MilvusDocumentStore
from milvus_haystack.milvus_embedding_retriever import MilvusEmbeddingRetriever
current_file_path = os.path.abspath(__file__)
file_paths = [current_file_path] # You can replace it with your own file paths.
document_store = MilvusDocumentStore(
connection_args={"uri": "./milvus.db"},
drop_old=True,
)
indexing_pipeline = Pipeline()
indexing_pipeline.add_component("converter", MarkdownToDocument())
indexing_pipeline.add_component("splitter", DocumentSplitter(split_by="sentence", split_length=2))
indexing_pipeline.add_component("embedder", OpenAIDocumentEmbedder())
indexing_pipeline.add_component("writer", DocumentWriter(document_store))
indexing_pipeline.connect("converter", "splitter")
indexing_pipeline.connect("splitter", "embedder")
indexing_pipeline.connect("embedder", "writer")
indexing_pipeline.run({"converter": {"sources": file_paths}})
print("Number of documents:", document_store.count_documents())
question = "How to set the service uri with milvus lite?" # You can replace it with your own question.
retrieval_pipeline = Pipeline()
retrieval_pipeline.add_component("embedder", OpenAITextEmbedder())
retrieval_pipeline.add_component("retriever", MilvusEmbeddingRetriever(document_store=document_store, top_k=3))
retrieval_pipeline.connect("embedder", "retriever")
retrieval_results = retrieval_pipeline.run({"embedder": {"text": question}})
for doc in retrieval_results["retriever"]["documents"]:
print(doc.content)
print("-" * 10)
from haystack.utils import Secret
from haystack.components.builders import PromptBuilder
from haystack.components.generators import OpenAIGenerator
prompt_template = """Answer the following query based on the provided context. If the context does
not include an answer, reply with 'I don't know'.\n
Query: {{query}}
Documents:
{% for doc in documents %}
{{ doc.content }}
{% endfor %}
Answer:
"""
rag_pipeline = Pipeline()
rag_pipeline.add_component("text_embedder", OpenAITextEmbedder())
rag_pipeline.add_component("retriever", MilvusEmbeddingRetriever(document_store=document_store, top_k=3))
rag_pipeline.add_component("prompt_builder", PromptBuilder(template=prompt_template))
rag_pipeline.add_component("generator", OpenAIGenerator(api_key=Secret.from_token(os.getenv("OPENAI_API_KEY")),
generation_kwargs={"temperature": 0}))
rag_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
rag_pipeline.connect("retriever.documents", "prompt_builder.documents")
rag_pipeline.connect("prompt_builder", "generator")
results = rag_pipeline.run(
{
"text_embedder": {"text": question},
"prompt_builder": {"query": question},
}
)
print('RAG answer:', results["generator"]["replies"][0])
from haystack import Document, Pipeline
from haystack.components.writers import DocumentWriter
from haystack.document_stores.types import DuplicatePolicy
from haystack_integrations.components.embedders.fastembed import (
FastembedSparseDocumentEmbedder,
FastembedSparseTextEmbedder,
)
from milvus_haystack import MilvusDocumentStore, MilvusSparseEmbeddingRetriever
document_store = MilvusDocumentStore(
connection_args={"uri": "./milvus.db"},
sparse_vector_field="sparse_vector", # Specify a name of the sparse vector field to enable sparse retrieval.
drop_old=True,
)
documents = [
Document(content="My name is Wolfgang and I live in Berlin"),
Document(content="I saw a black horse running"),
Document(content="Germany has many big cities"),
Document(content="fastembed is supported by and maintained by Milvus."),
]
sparse_document_embedder = FastembedSparseDocumentEmbedder()
writer = DocumentWriter(document_store=document_store, policy=DuplicatePolicy.OVERWRITE)
indexing_pipeline = Pipeline()
indexing_pipeline.add_component("sparse_document_embedder", sparse_document_embedder)
indexing_pipeline.add_component("writer", writer)
indexing_pipeline.connect("sparse_document_embedder", "writer")
indexing_pipeline.run({"sparse_document_embedder": {"documents": documents}})
query_pipeline = Pipeline()
query_pipeline.add_component("sparse_text_embedder", FastembedSparseTextEmbedder())
query_pipeline.add_component("sparse_retriever", MilvusSparseEmbeddingRetriever(document_store=document_store))
query_pipeline.connect("sparse_text_embedder.sparse_embedding", "sparse_retriever.query_sparse_embedding")
query = "Who supports fastembed?"
result = query_pipeline.run({"sparse_text_embedder": {"text": query}})
print(result["sparse_retriever"]["documents"][0])
# Document(id=..., content: 'fastembed is supported by and maintained by Milvus.', sparse_embedding: vector with 48 non-zero elements)
from haystack import Document, Pipeline
from haystack.components.embedders import OpenAIDocumentEmbedder, OpenAITextEmbedder
from haystack.components.writers import DocumentWriter
from haystack.document_stores.types import DuplicatePolicy
from haystack_integrations.components.embedders.fastembed import (
FastembedSparseDocumentEmbedder,
FastembedSparseTextEmbedder,
)
from milvus_haystack import MilvusDocumentStore, MilvusHybridRetriever
document_store = MilvusDocumentStore(
connection_args={"uri": "./milvus.db"},
drop_old=True,
sparse_vector_field="sparse_vector", # Specify a name of the sparse vector field to enable hybrid retrieval.
)
documents = [
Document(content="My name is Wolfgang and I live in Berlin"),
Document(content="I saw a black horse running"),
Document(content="Germany has many big cities"),
Document(content="fastembed is supported by and maintained by Milvus."),
]
writer = DocumentWriter(document_store=document_store, policy=DuplicatePolicy.OVERWRITE)
indexing_pipeline = Pipeline()
indexing_pipeline.add_component("sparse_doc_embedder", FastembedSparseDocumentEmbedder())
indexing_pipeline.add_component("dense_doc_embedder", OpenAIDocumentEmbedder())
indexing_pipeline.add_component("writer", writer)
indexing_pipeline.connect("sparse_doc_embedder", "dense_doc_embedder")
indexing_pipeline.connect("dense_doc_embedder", "writer")
indexing_pipeline.run({"sparse_doc_embedder": {"documents": documents}})
querying_pipeline = Pipeline()
querying_pipeline.add_component("sparse_text_embedder",
FastembedSparseTextEmbedder(model="prithvida/Splade_PP_en_v1"))
querying_pipeline.add_component("dense_text_embedder", OpenAITextEmbedder())
querying_pipeline.add_component(
"retriever",
MilvusHybridRetriever(
document_store=document_store,
# reranker=WeightedRanker(0.5, 0.5), # Default is RRFRanker()
)
)
querying_pipeline.connect("sparse_text_embedder.sparse_embedding", "retriever.query_sparse_embedding")
querying_pipeline.connect("dense_text_embedder.embedding", "retriever.query_embedding")
question = "Who supports fastembed?"
results = querying_pipeline.run(
{"dense_text_embedder": {"text": question},
"sparse_text_embedder": {"text": question}}
)
print(results["retriever"]["documents"][0])
# Document(id=..., content: 'fastembed is supported by and maintained by Milvus.', embedding: vector of size 1536, sparse_embedding: vector with 48 non-zero elements)
milvus-haystack
is distributed under the terms of the Apache-2.0 license.
FAQs
Unknown package
We found that milvus-haystack demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 3 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
Research
Security News
Socket researchers uncover the risks of a malicious Python package targeting Discord developers.
Security News
The UK is proposing a bold ban on ransomware payments by public entities to disrupt cybercrime, protect critical services, and lead global cybersecurity efforts.