🚀 Socket Launch Week 🚀 Day 2: Introducing Repository Labels and Security Policies.Learn More
Socket
Sign inDemoInstall
Socket

mlx-omni-server

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

mlx-omni-server

MLX Omni Server is a server that provides OpenAI-compatible APIs using Apple's MLX framework.

0.3.5
PyPI
Maintainers
1

MLX Omni Server

image

alt text

MLX Omni Server is a local inference server powered by Apple's MLX framework, specifically designed for Apple Silicon (M-series) chips. It implements OpenAI-compatible API endpoints, enabling seamless integration with existing OpenAI SDK clients while leveraging the power of local ML inference.

Features

  • 🚀 Apple Silicon Optimized: Built on MLX framework, optimized for M1/M2/M3/M4 series chips
  • 🔌 OpenAI API Compatible: Drop-in replacement for OpenAI API endpoints
  • 🎯 Multiple AI Capabilities:
    • Audio Processing (TTS & STT)
    • Chat Completion
    • Image Generation
  • High Performance: Local inference with hardware acceleration
  • 🔐 Privacy-First: All processing happens locally on your machine
  • 🛠 SDK Support: Works with official OpenAI SDK and other compatible clients

Supported API Endpoints

The server implements OpenAI-compatible endpoints:

  • Chat completions: /v1/chat/completions
    • ✅ Chat
    • ✅ Tools, Function Calling
    • ✅ Structured Output
    • ✅ LogProbs
    • 🚧 Vision
  • Audio
    • /v1/audio/speech - Text-to-Speech
    • /v1/audio/transcriptions - Speech-to-Text
  • Models
    • /v1/models - List models
    • /v1/models/{model} - Retrieve or Delete model
  • Images
    • /v1/images/generations - Image generation

Installation

# Install using pip
pip install mlx-omni-server

Quick Start

There are two ways to use MLX Omni Server:

Method 1: Using the HTTP Server

  • Start the server:
# If installed via pip as a package
mlx-omni-server

You can use --port to specify a different port, such as: mlx-omni-server --port 10240. The default port is 10240.

You can view more startup parameters by using mlx-omni-server --help.

  • Configure the OpenAI client to use your local server:
from openai import OpenAI

# Configure client to use local server
client = OpenAI(
    base_url="http://localhost:10240/v1",  # Point to local server
    api_key="not-needed"  # API key is not required for local server
)

Method 2: Using TestClient (No Server Required)

For development or testing, you can use TestClient to interact directly with the application without starting a server:

from openai import OpenAI
from fastapi.testclient import TestClient
from mlx_omni_server.main import app

# Use TestClient to interact directly with the application
client = OpenAI(
    http_client=TestClient(app)  # Use TestClient directly, no network service needed
)

Example Usage

Regardless of which method you choose, you can use the client in the same way:

# Chat Completion Example
chat_completion = client.chat.completions.create(
    model="mlx-community/Llama-3.2-1B-Instruct-4bit",
    messages=[
        {"role": "user", "content": "What can you do?"}
    ]
)

# Text-to-Speech Example
response = client.audio.speech.create(
    model="lucasnewman/f5-tts-mlx",
    input="Hello, welcome to MLX Omni Server!"
)

# Speech-to-Text Example
audio_file = open("speech.mp3", "rb")
transcript = client.audio.transcriptions.create(
    model="mlx-community/whisper-large-v3-turbo",
    file=audio_file
)

# Image Generation Example
image_response = client.images.generate(
    model="argmaxinc/mlx-FLUX.1-schnell",
    prompt="A serene landscape with mountains and a lake",
    n=1,
    size="512x512"
)

You can view more examples in examples.

Contributing

We welcome contributions! If you're interested in contributing to MLX Omni Server, please check out our Development Guide for detailed information about:

  • Setting up the development environment
  • Running the server in development mode
  • Contributing guidelines
  • Testing and documentation

For major changes, please open an issue first to discuss what you would like to change.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

Disclaimer

This project is not affiliated with or endorsed by OpenAI or Apple. It's an independent implementation that provides OpenAI-compatible APIs using Apple's MLX framework.

Star History 🌟

Star History Chart

Keywords

agi

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts