Security News
38% of CISOs Fear They’re Not Moving Fast Enough on AI
CISOs are racing to adopt AI for cybersecurity, but hurdles in budgets and governance may leave some falling behind in the fight against cyber threats.
🧊 Type hints for NumPy
🐼 Type hints for pandas.DataFrame
💡 Extensive dynamic type checks for dtypes shapes and structures
🚀 Jump to the Quickstart
Example of a hinted numpy.ndarray
:
>>> from nptyping import NDArray, Int, Shape
>>> arr: NDArray[Shape["2, 2"], Int]
Example of a hinted pandas.DataFrame
:
>>> from nptyping import DataFrame, Structure as S
>>> df: DataFrame[S["name: Str, x: Float, y: Float"]]
Command | Description |
---|---|
pip install nptyping | Install the basics |
pip install nptyping[pandas] | Install with pandas extension |
pip install nptyping[complete] | Install with all extensions |
Example of instance checking:
>>> import numpy as np
>>> isinstance(np.array([[1, 2], [3, 4]]), NDArray[Shape["2, 2"], Int])
True
>>> isinstance(np.array([[1., 2.], [3., 4.]]), NDArray[Shape["2, 2"], Int])
False
>>> isinstance(np.array([1, 2, 3, 4]), NDArray[Shape["2, 2"], Int])
False
nptyping
also provides assert_isinstance
. In contrast to assert isinstance(...)
, this won't cause IDEs or MyPy
complaints. Here is an example:
>>> from nptyping import assert_isinstance
>>> assert_isinstance(np.array([1]), NDArray[Shape["1"], Int])
True
You can also express structured arrays using nptyping.Structure
:
>>> from nptyping import Structure
>>> Structure["name: Str, age: Int"]
Structure['age: Int, name: Str']
Here is an example to see it in action:
>>> from typing import Any
>>> import numpy as np
>>> from nptyping import NDArray, Structure
>>> arr = np.array([("Peter", 34)], dtype=[("name", "U10"), ("age", "i4")])
>>> isinstance(arr, NDArray[Any, Structure["name: Str, age: Int"]])
True
Subarrays can be expressed with a shape expression between square brackets:
>>> Structure["name: Int[3, 3]"]
Structure['name: Int[3, 3]']
The recarray is a specialization of a structured array. You can use RecArray
to express them.
>>> from nptyping import RecArray
>>> arr = np.array([("Peter", 34)], dtype=[("name", "U10"), ("age", "i4")])
>>> rec_arr = arr.view(np.recarray)
>>> isinstance(rec_arr, RecArray[Any, Structure["name: Str, age: Int"]])
True
Pandas DataFrames can be expressed with Structure
also. To make it more concise, you may want to alias Structure
.
>>> from nptyping import DataFrame, Structure as S
>>> df: DataFrame[S["x: Float, y: Float"]]
Here is an example of a rich expression that can be done with nptyping
:
def plan_route(
locations: NDArray[Shape["[from, to], [x, y]"], Float]
) -> NDArray[Shape["* stops, [x, y]"], Float]:
...
More examples can be found in the documentation.
User documentation
The place to go if you are using this library.
Release notes
To see what's new, check out the release notes.
Contributing
If you're interested in developing along, find the guidelines here.
License
If you want to check out how open source this library is.
FAQs
Type hints for NumPy.
We found that nptyping demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
CISOs are racing to adopt AI for cybersecurity, but hurdles in budgets and governance may leave some falling behind in the fight against cyber threats.
Research
Security News
Socket researchers uncovered a backdoored typosquat of BoltDB in the Go ecosystem, exploiting Go Module Proxy caching to persist undetected for years.
Security News
Company News
Socket is joining TC54 to help develop standards for software supply chain security, contributing to the evolution of SBOMs, CycloneDX, and Package URL specifications.