Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

omegaml

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

omegaml

An open source DataOps, MLOps platform for humans

  • 0.16.3
  • Source
  • PyPI
  • Socket score

Maintainers
1

omega|ml - MLOps for humans

with just a single line of code you can

  • deploy machine learning models straight from Jupyter Notebook (or any other code)
  • implement data pipelines quickly, without memory limitation, all from a Pandas-like API
  • serve models and data from an easy to use REST API

Further, omega|ml is the fastest way to

  • scale model training on the included scalable pure-Python compute cluster, on Spark or any other cloud
  • collaborate on data science projects easily, sharing Jupyter Notebooks
  • deploy beautiful dashboards right from your Jupyter Notebook, using dashserve

Quick start

Start the omega|ml server right from your laptop or virtual machine

.. code::

$ wget https://raw.githubusercontent.com/omegaml/omegaml/master/docker-compose.yml
$ docker-compose up -d

Jupyter Notebook is immediately available at http://localhost:8899 (omegamlisfun to login). Any notebook you create will automatically be stored in the integrated omega|ml database, making collaboration a breeze. The REST API is available at http://localhost:5000.

Already have a Python environment (e.g. Jupyter Notebook)? Leverage the power of omega|ml by installing as follows:

.. code::

# assuming you have started the server as per above
$ pip install omegaml

Further information

Examples

.. code::

# transparently store Pandas Series and DataFrames or any Python object
om.datasets.put(df, 'stats')
om.datasets.get('stats', sales__gte=100)

# transparently store and get models
clf = LogisticRegression()
om.models.put(clf, 'forecast')
clf = om.models.get('forecast')

# run and scale models directly on the integrated Python or Spark compute cluster
om.runtime.model('forecast').fit('stats[^sales]', 'stats[sales]')
om.runtime.model('forecast').predict('stats')
om.runtime.model('forecast').gridsearch(X, Y)

# use the REST API to store and retrieve data, run predictions
requests.put('/v1/dataset/stats', json={...})
requests.get('/v1/dataset/stats?sales__gte=100')
requests.put('/v1/model/forecast', json={...})

Use Cases

omega|ml currently supports scikit-learn, Keras and Tensorflow out of the box. Need to deploy a model from another framework? Open an issue at https://github.com/omegaml/omegaml/issues or drop us a line at support@omegaml.io

Machine Learning Deployment

  • deploy models to production with a single line of code
  • serve and use models or datasets from a REST API

Data Science Collaboration

  • get a fully integrated data science workplace within minutes
  • easily share models, data, jupyter notebooks and reports with your collaborators

Centralized Data & Compute cluster

  • perform out-of-core computations on a pure-python or Apache Spark compute cluster
  • have a shared NoSQL database (MongoDB), out of the box, working like a Pandas dataframe
  • use a compute cluster to train your models with no additional setup

Scalability and Extensibility

  • scale your data science work from your laptop to team to production with no code changes
  • integrate any machine learning framework or third party data science platform with a common API

Towards Data Science recently published an article on omega|ml: https://towardsdatascience.com/omega-ml-deploying-data-machine-learning-pipelines-the-easy-way-a3d281569666

In addition omega|ml provides an easy-to-use extensions API to support any kind of models, compute cluster, database and data source.

Commercial Edition & Support

https://omegaml.io

omega|ml Commercial Edition provides security on every level and is ready made for Kubernetes deployment. It is licensed separately for on-premise, private or hybrid cloud. Sign up at https://omegaml.io

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc