![Oracle Drags Its Feet in the JavaScript Trademark Dispute](https://cdn.sanity.io/images/cgdhsj6q/production/919c3b22c24f93884c548d60cbb338e819ff2435-1024x1024.webp?w=400&fit=max&auto=format)
Security News
Oracle Drags Its Feet in the JavaScript Trademark Dispute
Oracle seeks to dismiss fraud claims in the JavaScript trademark dispute, delaying the case and avoiding questions about its right to the name.
A python tool that measures the tcp and udp network metrics
#####Contributors Deepika Ghodki Aman Harsh Neha Mishra Jacob Goldverg
Currently, the OneDataShare Transfer-Service do not collect/report(to AWS deployment) the network state they experience. Tools such as "sar" and "ethtool" report metrics like: ping, bandwidth, latency, link capacity, RTT,, etc to the user that allow them to understand bottlenecks in their network.
End System Resource Usage:
We initially explored three soultions and we have decided solution 1 would be sufficient and provide accurate enough metrics.
Solution 1. Writing a Python script which the Transfer-Service will run as a CRON job to collect the network conditions periodically. The script will create a file that will be formatted metric report, and the Transfer-Service will then read/parse that file and send it to CockroachDB/Prometheous that will be run on the AWS backend
The current state of the project is we have a python script that supports: kernel, and some network level metrics. The script generates a a file in the users home directory under ~/.pmeter/pmeter_measure.txt, this file stores a json dump of the ODS_Metrics object inside of the file. The cli is able to run for a number of measurements or a certain amount of time. Every "row" of the file is a new ODS_Metrics object that stores a new measurement. This file then gets parsed and cleaned up as the Transfer-Service reads from it and appends its own data to the object(file count, types of files,,, etc)then proceeds to store the data in InfluxDB/CockroachDB.
The aggregator service is a publisher to InfluxDB and has The aggregator service is a service running in the OneDataShare (ODS) VPC which summarizes and computes the data so we can perform some visualization. We currently have a graph being generated with one metric(latency) and we will now begin to explore ML.
Before we began exploring ML models we began by breaking down the problems which we are attempting to solve again.
The current data we are generating is what is commonly refereed to as "Time-Series Data". InfluxDb defines this type of data as "Time series data, also referred to as time-stamped data, is a sequence of data points indexed in time order. Time-stamped is data collected at different points in time.". It is essentially data that represents a snapshot of time for something, this something in our case in the kernel/network conditions that the Operating System is experiencing.
Solution 1: We currently expect the actual metrics to not be as accurate as the manual implementation on the Java application. As UDP/TCP are dynamic we know that having separate connections(python sockets vs java sockets) will create variability in the measurements. Another source of variability is using another programming language will only provide an estimation of what the Transfer-Service is experiencing in performance as the Java is completely virtualized. The benefit of this approach is that Python has many libraries more network measuring libraries.
ping: will allow measurement of packet loss and latency psutil: A networking library that exposes kernel/os level metrics. statsd: A library that allows us to construct concise reports for sending to AWS. influxdb: A Time series database that allows us to store and generate trivial graphs.
Solution 1. tcp-latency, udp-latency, ping, psutil(Exposes: CPU, NIC metrics) allows us to compute RTT, Bandwidth, estimated link capacity.
Tools: ping, psutil, Technologies: Java, Python, CockroachDB, Prometheus, Grafana
By the end of the semester we would like to have the transfer service to be fully monitoring its network conditions and reporting it periodically back to the ODS backend. We will be using either CockroachDB or Prometheus to be storing the time-series data thus allowing the ODS deployment to optimize the transfer based on the papers above. For extra browny points we would like to implement a Grafana dashboard so every user can be aware of the network conditions around their transfer.
FAQs
A CLI tool that helps capture metrics from the Operating System
We found that pmeter-ods demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Oracle seeks to dismiss fraud claims in the JavaScript trademark dispute, delaying the case and avoiding questions about its right to the name.
Security News
The Linux Foundation is warning open source developers that compliance with global sanctions is mandatory, highlighting legal risks and restrictions on contributions.
Security News
Maven Central now validates Sigstore signatures, making it easier for developers to verify the provenance of Java packages.