Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

polars-coord-transforms

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

polars-coord-transforms

Tools for coordinate transforms and S2-indexing via Polars Expression Plugins

  • 0.10.0
  • PyPI
  • Socket score

Maintainers
1

The Project

This Polars plugin provides functionality which can be loosely described as tranformation of coordinates and extraction of features from them.

It contains functions which were needed in personal and work projects, therefore its set of features might appear a bit random. Nevertheless one can find it useful in projects related to robotics, geospatial science, spatial analytics etc.

The functions are divided among three namespaces: transform, s2, distance:

  • transform namespace contains functions for converting coordinates from\to map, ecef, lla, utm reference frames.

  • s2 namespace contains functions which allow to work with S2 Cells

  • distance namespace allows to calculate distances between coordinates.

This plugin presupposes that coordianates represent points in space and that they are expressed with struct datatype in Polars.

Getting Started

Installation

pip install polars-coord-transforms

Usage

import polars_coord_transforms

In order to use plugin, coordinates should be represented as struct with fields x, y, z (or, in case of LLA-points: lon, lat, alt)!

For instance, if coordinates are in separate columns, one can make a valid struct with pl.struct native Polars function:

import polars as pl

df = pl.DataFrame(
    dict(
            lon=[31.409197919000064,],
            lat=[58.860667429000046,],
            alt=[57.309668855211015,],
        )
)

df.with_columns(
    point=pl.struct("lon", "lat", "alt")
)

Examples

Suppose we have the following DataFrame with some coordinates (column "pose"), rotation quaternion (column "rotation") and offset vector (column "offset"):


import polars as pl

df = pl.DataFrame(
    [
        pl.Series("pose", [{'x': 4190.66735544079, 'y': 14338.862844330957, 'z': 10.96391354687512}], dtype=pl.Struct({'x': pl.Float64, 'y': pl.Float64, 'z': pl.Float64})),
        pl.Series("rotation", [{'x': 0.13007119, 'y': 0.26472049, 'z': 0.85758219, 'w': 0.42137553}], dtype=pl.Struct({'x': pl.Float64, 'y': pl.Float64, 'z': pl.Float64, 'w': pl.Float64})),
        pl.Series("offset", [{'x': 2852423.40536658, 'y': 2201848.41975346, 'z': 5245234.74365368}], dtype=pl.Struct({'x': pl.Float64, 'y': pl.Float64, 'z': pl.Float64})),
    ]
)
print(df)


shape: (1, 3)
┌─────────────────────────────┬───────────────────────────┬───────────────────────────────────┐
│ pose                        ┆ rotation                  ┆ offset                            │
│ ---                         ┆ ---                       ┆ ---                               │
│ struct[3]                   ┆ struct[4]                 ┆ struct[3]                         │
╞═════════════════════════════╪═══════════════════════════╪═══════════════════════════════════╡
│ {4190.667,14338.863,10.964} ┆ {0.130,0.265,0.858,0.421} ┆ {2852423.405,2201848.420,5245234… │
└─────────────────────────────┴───────────────────────────┴───────────────────────────────────┘

transform
Transform coordinates from map reference frame to ECEF (Earth-Ceneterd, Earth-Fixed) coordinate system using a rotation quaternion and an offset vector.
df.with_columns(
    ecef=pl.col("pose").transform.map_to_ecef(
        pl.col("rotation"), pl.col("offset")
    )
)


shape: (1, 4)
┌────────────────────────┬────────────────────────┬────────────────────────┬───────────────────────┐
│ pose                   ┆ rotation               ┆ offset                 ┆ ecef                  │
│ ---                    ┆ ---                    ┆ ---                    ┆ ---                   │
│ struct[3]              ┆ struct[4]              ┆ struct[3]              ┆ struct[3]             │
╞════════════════════════╪════════════════════════╪════════════════════════╪═══════════════════════╡
│ {4190.667,14338.863,10 ┆ {0.130,0.265,0.858,0.4 ┆ {2852423.405,2201848.4 ┆ {2840491.941,2197932. │
│ .964}                  ┆ 21}                    ┆ 20,5245234…            ┆ 225,5253325…          │
└────────────────────────┴────────────────────────┴────────────────────────┴───────────────────────┘

Inverse transformation from ECEF to map
df.with_columns(
    pose_new=pl.col("ecef").transform.ecef_to_map("rotation", "offset")
).select(
    "pose",
    "pose_new"
)


shape: (1, 5)
┌───────────────────┬───────────────────┬───────────────────┬───────────────────┬──────────────────┐
│ pose              ┆ rotation          ┆ offset            ┆ ecef              ┆ pose_new         │
│ ---               ┆ ---               ┆ ---               ┆ ---               ┆ ---              │
│ struct[3]         ┆ struct[4]         ┆ struct[3]         ┆ struct[3]         ┆ struct[3]        │
╞═══════════════════╪═══════════════════╪═══════════════════╪═══════════════════╪══════════════════╡
│ {4190.667,14338.8 ┆ {0.130,0.265,0.85 ┆ {2852423.405,2201 ┆ {2840491.941,2197 ┆ {4190.667,14338. │
│ 63,10.964}        ┆ 8,0.421}          ┆ 848.420,5245234…  ┆ 932.225,5253325…  ┆ 863,10.964}      │
└───────────────────┴───────────────────┴───────────────────┴───────────────────┴──────────────────┘

Transform coordinates from ECEF to LLA (Longitude, Latitude, Altitude)
df.with_columns(
    lla=pl.col("ecef").transform.ecef_to_lla()
)

shape: (1, 3)
┌─────────────────────────────┬───────────────────────────────────┬─────────────────────────┐
│ pose                        ┆ ecef                              ┆ lla                     │
│ ---                         ┆ ---                               ┆ ---                     │
│ struct[3]                   ┆ struct[3]                         ┆ struct[3]               │
╞═════════════════════════════╪═══════════════════════════════════╪═════════════════════════╡
│ {4190.667,14338.863,10.964} ┆ {2840491.941,2197932.225,5253325… ┆ {37.732,55.820,163.916} │
└─────────────────────────────┴───────────────────────────────────┴─────────────────────────┘

Inverse transform from LLA to ECEF
df.with_columns(
    ecef_new=pl.col("lla").transform.lla_to_ecef()
)


shape: (1, 4)
┌────────────────────────┬────────────────────────┬────────────────────────┬───────────────────────┐
│ pose                   ┆ ecef                   ┆ lla                    ┆ ecef_new              │
│ ---                    ┆ ---                    ┆ ---                    ┆ ---                   │
│ struct[3]              ┆ struct[3]              ┆ struct[3]              ┆ struct[3]             │
╞════════════════════════╪════════════════════════╪════════════════════════╪═══════════════════════╡
│ {4190.667,14338.863,10 ┆ {2840491.941,2197932.2 ┆ {37.732,55.820,163.916 ┆ {2840491.941,2197932. │
│ .964}                  ┆ 25,5253325…            ┆ }                      ┆ 225,5253325…          │
└────────────────────────┴────────────────────────┴────────────────────────┴───────────────────────┘

Transform coordinates from LLA to UTM coordinates (UTM zone is derived from coordinates themselves)
df.with_columns(
    utm=pl.col("lla").transform.lla_to_utm()
)


shape: (1, 3)
┌─────────────────────────────┬─────────────────────────┬──────────────────────────────────┐
│ pose                        ┆ lla                     ┆ utm                              │
│ ---                         ┆ ---                     ┆ ---                              │
│ struct[3]                   ┆ struct[3]               ┆ struct[3]                        │
╞═════════════════════════════╪═════════════════════════╪══════════════════════════════════╡
│ {4190.667,14338.863,10.964} ┆ {37.732,55.820,163.916} ┆ {420564.380,6186739.936,163.916} │
└─────────────────────────────┴─────────────────────────┴──────────────────────────────────┘
Find UTM zone number from a LLA point
df.with_columns(
    utm_zone_number=pl.col("lla").transform.lla_to_utm_zone_number()
)

shape: (1, 3)
┌─────────────────────────┬──────────────────────────────────┬─────────────────┐
│ lla                     ┆ utm                              ┆ utm_zone_number │
│ ---                     ┆ ---                              ┆ ---             │
│ struct[3]               ┆ struct[3]                        ┆ u8              │
╞═════════════════════════╪══════════════════════════════════╪═════════════════╡
│ {37.732,55.820,163.916} ┆ {420564.380,6186739.936,163.916} ┆ 37              │
└─────────────────────────┴──────────────────────────────────┴─────────────────┘

Transform quaternion to Euler angles (roll, pitch, yaw)

the function returns a struct with 3 fields:"roll", "pitch", "yaw"

df.select(
    euler_angles=pl.col("rotation").transform.quat_to_euler_angles()
)

┌──────────────────────────────┐
│ euler_angles                 │
│ ---                          │
│ struct[3]                    │
╞══════════════════════════════╡
│ {0.598806,0.000000,2.228181} │
└──────────────────────────────┘
s2
Find S2 CellID of a point with longitude and latitude (with a given cell level)
df.select(
    cellid_30=pl.col("lla").s2.lonlat_to_cellid(level=30),
    cellid_28=pl.col("lla").s2.lonlat_to_cellid(level=28),
    cellid_5=pl.col("lla").s2.lonlat_to_cellid(level=5),
)


shape: (1, 3)
┌─────────────────────┬─────────────────────┬─────────────────────┐
│ cellid_30           ┆ cellid_28           ┆ cellid_5            │
│ ---                 ┆ ---                 ┆ ---                 │
│ u64                 ┆ u64                 ┆ u64                 │
╞═════════════════════╪═════════════════════╪═════════════════════╡
│ 5095036114269810839 ┆ 5095036114269810832 ┆ 5094697078462873600 │
└─────────────────────┴─────────────────────┴─────────────────────┘
Find longitude and latitude from a S2 CellID
df.select(
    lla_cell=pl.lit(5095036114269810839, dtype=pl.UInt64()).s2.cellid_to_lonlat()
)

shape: (1, 1)
┌─────────────────┐
│ lla_cell        │
│ ---             │
│ struct[2]       │
╞═════════════════╡
│ {37.732,55.820} │
└─────────────────┘

Find whether a given LLA point is in a S2 Cell identified by a specific ID
df.select(
    lla",
    cellid=pl.lit(5095036114269810832, dtype=pl.UInt64()),
    is_in_cell=pl.lit(5095036114269810832, dtype=pl.UInt64()).s2.cell_contains_point(pl.col("lla"))
)


shape: (1, 3)
┌─────────────────────────┬─────────────────────┬────────────┐
│ lla                     ┆ cellid              ┆ is_in_cell │
│ ---                     ┆ ---                 ┆ ---        │
│ struct[3]               ┆ u64                 ┆ bool       │
╞═════════════════════════╪═════════════════════╪════════════╡
│ {37.732,55.820,163.916} ┆ 5095036114269810832 ┆ true       │
└─────────────────────────┴─────────────────────┴────────────┘
Find vertices of a S2 Cell from a CellID
df.with_columns(
    cellid=pl.col("lla").s2.lonlat_to_cellid(level=5),
).with_columns(
    vertices=pl.col("cellid").s2.cellid_to_vertices()
)

shape: (1, 4)
┌─────────────────────────┬─────────────────────────┬─────────────────────┬────────────────────────┐
│ pose                    ┆ lla                     ┆ cellid              ┆ vertices               │
│ ---                     ┆ ---                     ┆ ---                 ┆ ---                    │
│ struct[3]               ┆ struct[3]               ┆ u64                 ┆ struct[8]              │
╞═════════════════════════╪═════════════════════════╪═════════════════════╪════════════════════════╡
│ {4190.667,14338.863,10. ┆ {37.732,55.820,163.916} ┆ 5094697078462873600 ┆ {37.304,55.491,40.932, │
│ 964}                    ┆                         ┆                     ┆ 57.545,36.…            │
└─────────────────────────┴─────────────────────────┴─────────────────────┴────────────────────────┘

df.select("vertices").unnest("vertices")

shape: (1, 8)
┌────────┬────────┬────────┬────────┬────────┬────────┬────────┬────────┐
│ v0_lon ┆ v0_lat ┆ v1_lon ┆ v1_lat ┆ v2_lon ┆ v2_lat ┆ v3_lon ┆ v3_lat │
│ ---    ┆ ---    ┆ ---    ┆ ---    ┆ ---    ┆ ---    ┆ ---    ┆ ---    │
│ f64    ┆ f64    ┆ f64    ┆ f64    ┆ f64    ┆ f64    ┆ f64    ┆ f64    │
╞════════╪════════╪════════╪════════╪════════╪════════╪════════╪════════╡
│ 37.304 ┆ 55.491 ┆ 40.932 ┆ 57.545 ┆ 36.495 ┆ 59.135 ┆ 33.024 ┆ 56.886 │
└────────┴────────┴────────┴────────┴────────┴────────┴────────┴────────┘

distance
df = pl.DataFrame(
    [
        pl.Series("point_1", [{'x': -8893.663914126577, 'y': 19116.178523519542, 'z': 14.98697863612324}], dtype=pl.Struct({'x': pl.Float64, 'y': pl.Float64, 'z': pl.Float64})),
        pl.Series("point_2", [{'x': 1553.3742543335538, 'y': 2916.118342842441, 'z': 15.580027717165649}], dtype=pl.Struct({'x': pl.Float64, 'y': pl.Float64, 'z': pl.Float64})),
    ]
)
Find Euclidean distance between two points using all 3 components of a point-vector
df.with_columns(
    distance=pl.col("point_1").distance.euclidean_3d(pl.col("point_2"))
)

shape: (1, 3)
┌──────────────────────────────┬────────────────────────────┬───────────┐
│ point_1                      ┆ point_2                    ┆ distance  │
│ ---                          ┆ ---                        ┆ ---       │
│ struct[3]                    ┆ struct[3]                  ┆ f64       │
╞══════════════════════════════╪════════════════════════════╪═══════════╡
│ {-8893.664,19116.179,14.987} ┆ {1553.374,2916.118,15.580} ┆ 19276.477 │
└──────────────────────────────┴────────────────────────────┴───────────┘
Find cosine similarity between between two points using all 3 components of a point-vector
df.with_columns(
    cosine_sim=pl.col("point_1").distance.cosine_similarity_3d(pl.col("point_2"))
)

shape: (1, 3)
┌──────────────────────────────┬────────────────────────────┬────────────┐
│ point_1                      ┆ point_2                    ┆ cosine_sim │
│ ---                          ┆ ---                        ┆ ---        │
│ struct[3]                    ┆ struct[3]                  ┆ f64        │
╞══════════════════════════════╪════════════════════════════╪════════════╡
│ {-8893.664,19116.179,14.987} ┆ {1553.374,2916.118,15.580} ┆ 0.602      │
└──────────────────────────────┴────────────────────────────┴────────────┘
Find Euclidean distance between two points using 2 components of a point-vector (X and Y)
df.with_columns(
    distance=pl.col("point_1").distance.euclidean_2d(pl.col("point_2"))
)

┌──────────────────────────────┬────────────────────────────┬───────────┐
│ point_1                      ┆ point_2                    ┆ distance  │
│ ---                          ┆ ---                        ┆ ---       │
│ struct[3]                    ┆ struct[3]                  ┆ f64       │
╞══════════════════════════════╪════════════════════════════╪═══════════╡
│ {-8893.664,19116.179,14.987} ┆ {1553.374,2916.118,15.580} ┆ 19276.477 │
└──────────────────────────────┴────────────────────────────┴───────────┘
Find cosine similarity between between two points using 2 components of a point-vector (X and Y)
shape: (1, 3)
┌──────────────────────────────┬────────────────────────────┬────────────┐
│ point_1                      ┆ point_2                    ┆ cosine_sim │
│ ---                          ┆ ---                        ┆ ---        │
│ struct[3]                    ┆ struct[3]                  ┆ f64        │
╞══════════════════════════════╪════════════════════════════╪════════════╡
│ {-8893.664,19116.179,14.987} ┆ {1553.374,2916.118,15.580} ┆ 0.602      │
└──────────────────────────────┴────────────────────────────┴────────────┘

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc