Research
Security News
Malicious npm Packages Inject SSH Backdoors via Typosquatted Libraries
Socket’s threat research team has detected six malicious npm packages typosquatting popular libraries to insert SSH backdoors.
A Background Subtraction Library
Last page update: 04/03/2023
Library Version: 3.3.0 (see Build Status and Release Notes for more info)
The BGSLibrary was developed in early 2012 by Andrews Sobral as a C++ framework (with wrappers available for Python, Java and MATLAB) for foreground-background separation in videos using OpenCV. The bgslibrary is compatible with OpenCV versions 2.4.x, 3.x and 4.x, and can be compiled on Windows, Linux, and Mac OS X. It currently contains 43 algorithms and is available free of charge to all users, both academic and commercial. The library's source code is available under the MIT license.
Installation instructions
You can either install BGSLibrary via pre-built binary package or build it from source
Supported Compilers are:
GCC 4.8 and above
Clang 3.4 and above
MSVC 2015, 2017, 2019 or newer
Other compilers might work, but are not officially supported. The bgslibrary requires some features from the ISO C++ 2014 standard.
Algorithm | OpenCV < 3.0 (42) | 3.0 <= OpenCV <= 3.4.7 (41) | 3.4.7 < OpenCV < 4.0 (39) | OpenCV >= 4.0 (26) |
---|---|---|---|---|
AdaptiveBackgroundLearning | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
AdaptiveSelectiveBackgroundLearning | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
CodeBook | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
DPAdaptiveMedian | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :x: |
DPEigenbackground | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :x: |
DPGrimsonGMM | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :x: |
DPMean | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :x: |
DPPratiMediod | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :x: |
DPTexture | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :x: |
DPWrenGA | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :x: |
DPZivkovicAGMM | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :x: |
FrameDifference | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
FuzzyChoquetIntegral | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
FuzzySugenoIntegral | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
GMG | :heavy_check_mark: | :x: | :x: | :x: |
IndependentMultimodal | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
KDE | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
KNN | :x: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
LBAdaptiveSOM | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
LBFuzzyAdaptiveSOM | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
LBFuzzyGaussian | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
LBMixtureOfGaussians | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
LBP_MRF | :heavy_check_mark: | :heavy_check_mark: | :x: | :x: |
LBSimpleGaussian | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
LOBSTER | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
MixtureOfGaussianV1 | :heavy_check_mark: | :x: | :x: | :x: |
MixtureOfGaussianV2 | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
MultiCue | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :x: |
MultiLayer | :heavy_check_mark: | :heavy_check_mark: | :x: | :x: |
PAWCS | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
PixelBasedAdaptiveSegmenter | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
SigmaDelta | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
StaticFrameDifference | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
SuBSENSE | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
T2FGMM_UM | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :x: |
T2FGMM_UV | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :x: |
T2FMRF_UM | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :x: |
T2FMRF_UV | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :x: |
TwoPoints | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
ViBe | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
VuMeter | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
WeightedMovingMean | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
WeightedMovingVariance | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
If you use this library for your publications, please cite it as:
@inproceedings{bgslibrary,
author = {Sobral, Andrews},
title = {{BGSLibrary}: An OpenCV C++ Background Subtraction Library},
booktitle = {IX Workshop de Visão Computacional (WVC'2013)},
address = {Rio de Janeiro, Brazil},
year = {2013},
month = {Jun},
url = {https://github.com/andrewssobral/bgslibrary}
}
A chapter about the BGSLibrary has been published in the handbook on Background Modeling and Foreground Detection for Video Surveillance.
@incollection{bgslibrarychapter,
author = {Sobral, Andrews and Bouwmans, Thierry},
title = {BGS Library: A Library Framework for Algorithm’s Evaluation in Foreground/Background Segmentation},
booktitle = {Background Modeling and Foreground Detection for Video Surveillance},
publisher = {CRC Press, Taylor and Francis Group.}
year = {2014},
}
Download PDF:
Sobral, Andrews. BGSLibrary: An OpenCV C++ Background Subtraction Library. IX Workshop de Visão Computacional (WVC'2013), Rio de Janeiro, Brazil, Jun. 2013. (PDF in brazilian-portuguese containing an english abstract).
Sobral, Andrews; Bouwmans, Thierry. "BGS Library: A Library Framework for Algorithm’s Evaluation in Foreground/Background Segmentation". Chapter on the handbook "Background Modeling and Foreground Detection for Video Surveillance", CRC Press, Taylor and Francis Group, 2014. (PDF in english).
Some algorithms of the BGSLibrary were used successfully in the following papers:
(2014) Sobral, Andrews; Vacavant, Antoine. A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Computer Vision and Image Understanding (CVIU), 2014. (Online) (PDF)
(2013) Sobral, Andrews; Oliveira, Luciano; Schnitman, Leizer; Souza, Felippe. (Best Paper Award) Highway Traffic Congestion Classification Using Holistic Properties. In International Conference on Signal Processing, Pattern Recognition and Applications (SPPRA'2013), Innsbruck, Austria, Feb 2013. (Online) (PDF)
FAQs
Official Python wrapper for BGSLibrary
We found that pybgs demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
Socket’s threat research team has detected six malicious npm packages typosquatting popular libraries to insert SSH backdoors.
Security News
MITRE's 2024 CWE Top 25 highlights critical software vulnerabilities like XSS, SQL Injection, and CSRF, reflecting shifts due to a refined ranking methodology.
Security News
In this segment of the Risky Business podcast, Feross Aboukhadijeh and Patrick Gray discuss the challenges of tracking malware discovered in open source softare.