Socket
Socket
Sign inDemoInstall

rotograd

Package Overview
Dependencies
5
Maintainers
1
Alerts
File Explorer

Install Socket

Detect and block malicious and high-risk dependencies

Install

    rotograd

RotoGrad: Gradient Homogenization in Multitask Learning in Pytorch


Maintainers
1

Readme

RotoGrad

Documentation Package Paper License

A library for dynamic gradient homogenization for multitask learning in Pytorch

Installation

Installing this library is as simple as running in your terminal

pip install rotograd

The code has been tested in Pytorch 1.7.0, yet it should work on most versions. Feel free to open an issue if that were not the case.

Overview

This is the official Pytorch implementation of RotoGrad, an algorithm to reduce the negative transfer due to gradient conflict with respect to the shared parameters when different tasks of a multitask learning system fight for the shared resources.

Let's say you have a hard-parameter sharing architecture with a backbone model shared across tasks, and two different tasks you want to solve. These tasks take the output of the backbone z = backbone(x) and fed it to a task-specific model (head1 and head2) to obtain the predictions of their tasks, that is, y1 = head1(z) and y2 = head2(z).

Then you can simply use RotateOnly, RotoGrad. or RotoGradNorm (RotateOnly + GradNorm) by putting all parts together in a single model.

from rotograd import RotoGrad
model = RotoGrad(backbone, [head1, head2], size_z, normalize_losses=True)

where you can recover the backbone and i-th head simply calling model.backbone and model.heads[i]. Even more, you can obtain the end-to-end model for a single task (that is, backbone + head), by typing model[i].

As discussed in the paper, it is advisable to have a smaller learning rate for the parameters of RotoGrad and GradNorm. This is as simple as doing:

optimizer = nn.Adam(
    [{'params': m.parameters()} for m in [backbone, head1, head2]] +
    [{'params': model.parameters(), 'lr': learning_rate_rotograd}],
    lr=learning_rate_model)

Finally, we can train the model on all tasks using a simple step function:

import rotograd

def step(x, y1, y2):
    model.train()
    
    optimizer.zero_grad()

    with rotograd.cached():  # Speeds-up computations by caching Rotograd's parameters
        pred1, pred2 = model(x)
        loss1, loss2 = loss_task1(pred1, y1), loss_task2(pred2, y2)
        model.backward([loss1, loss2])
    optimizer.step()
    
    return loss1, loss2

Example

You can find a working example in the folder example. However, it requires some other dependencies to run (e.g., ignite and seaborn). The example shows how to use RotoGrad on one of the regression problems from the manuscript.

image

Citing

Consider citing the following paper if you use RotoGrad:

@inproceedings{javaloy2022rotograd,
   title={RotoGrad: Gradient Homogenization in Multitask Learning},
   author={Adri{\'a}n Javaloy and Isabel Valera},
   booktitle={International Conference on Learning Representations},
   year={2022},
   url={https://openreview.net/forum?id=T8wHz4rnuGL}
}

Keywords

FAQs


Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc