Security News
Fluent Assertions Faces Backlash After Abandoning Open Source Licensing
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
NOTE: s2cloudless masks are now available as a precomputed layer within Sentinel Hub. Check the announcement blog post and technical documentation.
The s2cloudless Python package provides automated cloud detection in Sentinel-2 imagery. The classification is based on a single-scene pixel-based cloud detector developed by Sentinel Hub's research team and is described in more detail in this blog.
The s2cloudless algorithm was part of an international collaborative effort aimed at intercomparing cloud detection algorithms. The s2cloudless algorithm was validated together with 9 other algorithms on 4 different test datasets and in all cases found to be on the Pareto front. See the paper
The package requires a Python version >= 3.8. The package is available on the PyPI package manager and can be installed with
$ pip install s2cloudless
To install the package manually, clone the repository and
$ pip install .
One of s2cloudless
dependencies is lightgbm
package. If having problems during installation, please
check the LightGBM installation guide.
Before installing s2cloudless
on Windows, it is recommended to install package shapely
from
Unofficial Windows wheels repository
The inputs to the cloud detector are Sentinel-2 images. In particular, the cloud detector requires the following 10 Sentinel-2 band reflectances: B01, B02, B04, B05, B08, B8A, B09, B10, B11, B12, which are obtained from raw reflectance values in the following way: B_i/10000
. From product baseline 04.00
onward additional harmonization factors have to be applied to data according to instructions from ESA.
You don't need to worry about any of this, if you are using Sentinel-2 data obtained from Sentinel Hub Process API. By default, the data is already harmonized according to documentation. The API is supported in Python with sentinelhub-py package and used within s2cloudless.CloudMaskRequest
class.
A Jupyter notebook on how to use the cloud detector to produce cloud mask or cloud probability map can be found in the examples folder.
FAQs
Sentinel Hub's cloud detector for Sentinel-2 imagery
We found that s2cloudless demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 5 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
Research
Security News
Socket researchers uncover the risks of a malicious Python package targeting Discord developers.
Security News
The UK is proposing a bold ban on ransomware payments by public entities to disrupt cybercrime, protect critical services, and lead global cybersecurity efforts.