==========
smecv_grid
.. image:: https://travis-ci.org/TUW-GEO/smecv-grid.svg?branch=master
:target: https://travis-ci.org/TUW-GEO/smecv-grid
.. image:: https://coveralls.io/repos/github/TUW-GEO/smecv-grid/badge.svg?branch=master
:target: https://coveralls.io/github/TUW-GEO/smecv-grid?branch=master
.. image:: https://readthedocs.org/projects/smecv-grid/badge/?version=latest
:target: http://smecv-grid.readthedocs.io/en/latest/?badge=latest
.. image:: https://badge.fury.io/py/smecv-grid.svg
:target: https://badge.fury.io/py/smecv-grid
Description
Grid definition of the 0.25 degree Discrete Global Grid (DGG) used for the creation of the CCI
soil moisture products and the Copernicus Climate Change Service products.
Full Documentation
For the full documentation <http://smecv-grid.readthedocs.io/en/latest>
_,
click on the docs-badge at the top.
Installation
The package is available on pypi and can be installed via pip:
.. code::
pip install smecv_grid
Loading and using the SMECV grid
The smecv_grid package contains the global quarter degree (0.25x0.25 DEG) grid
definition, used for organising the ESA CCI SM and C3S SM data products.
It contains masks for:
- Land Points (default)
- Dense Vegetation (AMSR-E LPRMv6 VOD>0.526),
- Rainforest Areas
- One or multiple ESA CCI LC classes (reference year 2010)
- One or multiple Koeppen-Geiger climate classes (
Peel et al. 2007 <https://www.hydrol-earth-syst-sci.net/11/1633/2007/>
_, DOI:10.5194/hess-11-1633-2007).
For more information on grid definitions and the usage of grids in general, we refer to
the pygeogrids package <https://github.com/TUW-GEO/pygeogrids>
_ in the background.
Loading the grid
For loading the grid, simply run the following code. Then use it as described
in pygeogrids <https://github.com/TUW-GEO/pygeogrids>
_
.. code-block:: python
from smecv_grid import SMECV_Grid_v052
# Load a global grid
glob_grid = SMECV_Grid_v052(subset_flag=None)
# Load a land grid
land_grid = SMECV_Grid_v052(subset_flag='land')
# Load a rainforest grid
rainforest_grid = SMECV_Grid_v052(subset_flag='rainforest')
# Load grid with points where VOD > 0.526 (based on AMSR-E VOD)
dense_vegetation_grid = SMECV_Grid_v052(subset_flag='high_vod')
# Load a grid with points over urban areas
urban_grid = SMECV_Grid_v052(subset_flag='landcover_class', subset_value=190.)
# Load a landcover with points over grassland areas
grassland_grid = SMECV_Grid_v052(subset_flag='landcover_class',
subset_value=[120., 121., 122., 130., 180.])
# Load a climate grid with points over tropical areas
tropical_grid = SMECV_Grid_v052(subset_flag='climate_class',
subset_value=[0., 1., 2.])
To see all available classes and subset values see tables on implemented
ESA CCI LC <https://smecv-grid.readthedocs.io/en/latest/?badge=latest#esa-cci-land-cover-classes>
_
and KG Climate classes <https://smecv-grid.readthedocs.io/en/latest/?badge=latest#kg-climate-classification>
_