Socket
Book a DemoInstallSign in
Socket

stackvar

Package Overview
Dependencies
Maintainers
1
Versions
10
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

stackvar

Dispatch function's parameters through the callstack omitting arguments on intermediary functions. (a.k.a.: stack variable)

pipPyPI
Version
3.3.0
Maintainers
1

stackvar

Dispatch function’s parameters through the callstack omitting arguments on intermediary functions.

Summary example

Let’s suppose you have 4 functions nested in the call stack like this:

.. code:: python

def func1(): value_for_func4 = 10 func2()

def func2(): func3()

def func3(): func4()

def func4(value): #need to use value_for_func4 here #print(value_for_func4) ...

If you want to make value_for_func4 to reach func4 you have these standard options

  • explicitly passing argument value_for_func4 through all 4 functions.
  • using a global value_for_func4 variable.
  • move all the functions func1 ... func4 inside an object and setting a shared property self.value_for_func4.
  • passing a context object with context.value_for_func4 or using **kwargs dictionary through the functions.

With stackvar you have a fifth option, which is having a side channel to dispatch variables through the call stack. Things would be written as:

.. code:: python

def func1(): with stackvar.send(func4, value_for_func4=10): func2()

def func2(): func3()

def func3(): func4()

@stackvar.receive() def send_email(value_for_func4: stackvar.Variable = None): print(f'value_for_func4={value_for_func4}')

Advantages: - avoids clogging functions arguments - avoids clogging the global namespace - avoids clogging the object’s namespace - each thread has its own value - no need to use objects to solve the problem (still can do functional programming) - you can define default value - you can override when calling the receiver directly - you can dispatch to a function or to a namespace (defined by a UUID)

Disadvantages - not every debugging tools are not prepared to take stackvar into account. - adds stackvar and pydantic as dependencies - single programmer project in beta state

Warnings - You can’t send stackvars between threads, this is on purpose, to avoid race conditions for sharing data between threads. You should pass the data to the thread and then send it inside the thread.

Installing

https://pypi.org/project/stackvar/

::

pip install -U stackvar

Full example

.. code:: python

import stackvar

def test_stackvar(): # sending within a context with stackvar.send(send_email, email='rsanchez@example.com'): foo() # Use default value send_email() # pass specific value send_email('jerry@example.com')

def foo(): # intermediary function bar()

def bar(): # intermediary function send_email()

@stackvar.receive() def send_email(email: stackvar.Variable = 'morty@example.com'): print(f'Sending email to={email}')

if name == 'main': test_stackvar()

Will output

::

Sending email to=rsanchez@example.com Sending email to=morty@example.com Sending email to=jerry@example.com

All features showcase

.. code:: python

import stackvar import uuid

def cheat_sheet_doc(): # Using namespace (recommended method) my_namespace = stackvar.Namespace(uuid.uuid4()) @stackvar.receive(my_namespace) def send_email(email: stackvar.Variable = 'morty@example.com'): print(f'Sending email to={email}') with stackvar.send(my_namespace, email='rsanchez@example.com'): send_email()

   # Automatic namespace (solved from function)
   @stackvar.receive()
   def send_email2(email: stackvar.Variable = 'morty@example.com'):
       print(f'Sending email to={email}')
   with stackvar.send(send_email2, email='rsanchez@example.com'):
       send_email2()

   # Without decorator
   ns_uuid2 = stackvar.Namespace(uuid.uuid4())
   def send_email_nodecorator():
       email1 = ns_uuid2.email1
       # setting default value for a variable
       email2 = getattr(ns_uuid2, 'email2', 'jerry@example.com')
       print(f'Sending email1 to={email1} and {email2}')
       # another fancier way to set a default
       email2 = stackvar.get(ns_uuid2, email2='summer@example.com')
       print(f'Sending email1 to={email1} and {email2}')
   with stackvar.send(ns_uuid2, email1='rsanchez@example.com'):
       send_email_nodecorator()

   # No default values
   ns_uuid3 = stackvar.Namespace(uuid.uuid4())
   @stackvar.receive(ns_uuid3)
   def send_no_default(email1: stackvar.Variable, email2: stackvar.Variable):
       print(f'Sending={email1} and {email2}')
   with stackvar.send(ns_uuid3,
                      email1='rsanchez@example.com',
                      email2='summer@example.com'):
       send_no_default()

   # Using a Factory for default values
   ns_uuid4 = stackvar.Namespace(uuid.uuid4())
   @stackvar.receive(ns_uuid4)
   def send_factory(email_list: stackvar.Factory = list):
       email_list.append('squanchy@example.com')
       print(f'Sending to={email_list}')
   with stackvar.send(ns_uuid4):
       send_factory()

if name == 'main': cheat_sheet_doc()

More docs

Check examples at https://gitlab.com/joaduo/stackvar/-/tree/main/tests

Keywords

stack

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts