Before running your script, set the following environment variables:
export BROWSERBASE_API_KEY="your-api-key"export BROWSERBASE_PROJECT_ID="your-project-id"export MODEL_API_KEY="your-openai-api-key"# or your preferred model's API keyexport STAGEHAND_API_URL="url-of-stagehand-server"
You can also make a copy of .env.example and add these to your .env file.
Quickstart
Stagehand supports both synchronous and asynchronous usage. Here are examples for both approaches:
Sync Client
import os
from stagehand.sync import Stagehand
from stagehand import StagehandConfig
from dotenv import load_dotenv
load_dotenv()
defmain():
# Configure Stagehand
config = StagehandConfig(
env="BROWSERBASE",
api_key=os.getenv("BROWSERBASE_API_KEY"),
project_id=os.getenv("BROWSERBASE_PROJECT_ID"),
model_name="gpt-4o",
model_client_options={"apiKey": os.getenv("MODEL_API_KEY")}
)
# Initialize Stagehand
stagehand = Stagehand(config=config, server_url=os.getenv("STAGEHAND_API_URL"))
stagehand.init()
print(f"Session created: {stagehand.session_id}")
# Navigate to a page
stagehand.page.goto("https://google.com/")
# Use Stagehand AI primitives
stagehand.page.act("search for openai")
# Combine with Playwright
stagehand.page.keyboard.press("Enter")
# Observe elements on the page
observed = stagehand.page.observe("find the news button")
if observed:
stagehand.page.act(observed[0]) # Act on the first observed element# Extract data from the page
data = stagehand.page.extract("extract the first result from the search")
print(f"Extracted data: {data}")
# Close the session
stagehand.close()
if __name__ == "__main__":
main()
Async Client
import os
import asyncio
from stagehand import Stagehand, StagehandConfig
from dotenv import load_dotenv
load_dotenv()
asyncdefmain():
# Configure Stagehand
config = StagehandConfig(
env="BROWSERBASE",
api_key=os.getenv("BROWSERBASE_API_KEY"),
project_id=os.getenv("BROWSERBASE_PROJECT_ID"),
model_name="gpt-4o",
model_client_options={"apiKey": os.getenv("MODEL_API_KEY")}
)
# Initialize Stagehand
stagehand = Stagehand(config=config, server_url=os.getenv("STAGEHAND_API_URL"))
await stagehand.init()
print(f"Session created: {stagehand.session_id}")
# Get page reference
page = stagehand.page
# Navigate to a pageawait page.goto("https://google.com/")
# Use Stagehand AI primitivesawait page.act("search for openai")
# Combine with Playwrightawait page.keyboard.press("Enter")
# Observe elements on the page
observed = await page.observe("find the news button")
if observed:
await page.act(observed[0]) # Act on the first observed element# Extract data from the page
data = await page.extract("extract the first result from the search")
print(f"Extracted data: {data}")
# Close the sessionawait stagehand.close()
if __name__ == "__main__":
asyncio.run(main())
Agent Example
import os
from stagehand.sync import Stagehand
from stagehand import StagehandConfig
from stagehand.schemas import AgentConfig, AgentExecuteOptions, AgentProvider
from dotenv import load_dotenv
load_dotenv()
defmain():
# Configure Stagehand
config = StagehandConfig(
env="BROWSERBASE",
api_key=os.getenv("BROWSERBASE_API_KEY"),
project_id=os.getenv("BROWSERBASE_PROJECT_ID"),
model_name="gpt-4o",
model_client_options={"apiKey": os.getenv("MODEL_API_KEY")}
)
# Initialize Stagehand
stagehand = Stagehand(config=config, server_url=os.getenv("STAGEHAND_API_URL"))
stagehand.init()
print(f"Session created: {stagehand.session_id}")
# Navigate to Google
stagehand.page.goto("https://google.com/")
# Configure the agent
agent_config = AgentConfig(
provider=AgentProvider.OPENAI,
model="computer-use-preview",
instructions="You are a helpful web navigation assistant. You are currently on google.com."
options={"apiKey": os.getenv("MODEL_API_KEY")}
)
# Define execution options
execute_options = AgentExecuteOptions(
instruction="Search for 'latest AI news' and extract the titles of the first 3 results",
max_steps=10,
auto_screenshot=True
)
# Execute the agent task
agent_result = stagehand.agent.execute(agent_config, execute_options)
print(f"Agent execution result: {agent_result}")
# Close the session
stagehand.close()
if __name__ == "__main__":
main()
Pydantic Schemas
ActOptions
The ActOptions model takes an action field that tells the AI what to do on the page, plus optional fields such as useVision and variables:
from stagehand.schemas import ActOptions
# Example:await page.act(ActOptions(action="click on the 'Quickstart' button"))
ObserveOptions
The ObserveOptions model lets you find elements on the page using natural language. The onlyVisible option helps limit the results:
from stagehand.schemas import ObserveOptions
# Example:await page.observe(ObserveOptions(instruction="find the button labeled 'News'", onlyVisible=True))
ExtractOptions
The ExtractOptions model extracts structured data from the page. Pass your instructions and a schema defining your expected data format. Note: If you are using a Pydantic model for the schema, call its .model_json_schema() method to ensure JSON serializability.
from stagehand.schemas import ExtractOptions
from pydantic import BaseModel
classDescriptionSchema(BaseModel):
description: str# Example:
data = await page.extract(
ExtractOptions(
instruction="extract the description of the page",
schemaDefinition=DescriptionSchema.model_json_schema()
)
)
description = data.get("description") ifisinstance(data, dict) else data.description
Actions caching
You can cache actions in Stagehand to avoid redundant LLM calls. This is particularly useful for actions that are expensive to run or when the underlying DOM structure is not expected to change.
Using observe to preview an action
observe lets you preview an action before taking it. If you are satisfied with the action preview, you can run it in page.act with no further LLM calls.
# Get the action preview
action_preview = await page.observe("Click the quickstart link")
# action_preview is a JSON-ified version of a Playwright action:# {# "description": "The quickstart link",# "action": "click",# "selector": "/html/body/div[1]/div[1]/a",# "arguments": []# }# NO LLM INFERENCE when calling act on the previewawait page.act(action_preview[0])
Simple caching
Here's an example of implementing a simple file-based cache:
import json
from pathlib import Path
from typing importOptional, Dict, Any# Get the cached value (None if it doesn't exist)asyncdefget_cache(key: str) -> Optional[Dict[str, Any]]:
try:
cache_path = Path("cache.json")
ifnot cache_path.exists():
returnNonewithopen(cache_path) as f:
cache = json.load(f)
return cache.get(key)
except Exception:
returnNone# Set the cache valueasyncdefset_cache(key: str, value: Dict[str, Any]) -> None:
cache_path = Path("cache.json")
cache = {}
if cache_path.exists():
withopen(cache_path) as f:
cache = json.load(f)
cache[key] = value
withopen(cache_path, "w") as f:
json.dump(cache, f)
Act with cache
Here's a function that checks the cache, gets the action, and runs it:
asyncdefact_with_cache(page, key: str, prompt: str):
# Check if we have a cached action
cached_action = await get_cache(key)
if cached_action:
# Use the cached action
action = cached_action
else:
# Get the observe result (the action)
action = await page.observe(prompt)
# Cache the actionawait set_cache(key, action[0])
# Run the action (no LLM inference)await page.act(action[0])
You can now use act_with_cache to run an action with caching:
Stagehand adds determinism to otherwise unpredictable agents.
While there's no limit to what you could instruct Stagehand to do, our primitives allow you to control how much you want to leave to an AI. It works best when your code is a sequence of atomic actions. Instead of writing a single script for a single website, Stagehand allows you to write durable, self-healing, and repeatable web automation workflows that actually work.
[!NOTE]
Stagehand is currently available as an early release, and we're actively seeking feedback from the community. Please join our Slack community to stay updated on the latest developments and provide feedback.
Configuration
Stagehand can be configured via environment variables or through a StagehandConfig object. Available configuration options include:
STAGEHAND_API_URL: URL of the Stagehand API server.
browserbase_api_key: Your Browserbase API key (BROWSERBASE_API_KEY).
browserbase_project_id: Your Browserbase project ID (BROWSERBASE_PROJECT_ID).
model_api_key: Your model API key (e.g. OpenAI, Anthropic, etc.) (MODEL_API_KEY).
verbose: Verbosity level (default: 1).
Level 0: Error logs
Level 1: Basic info logs (minimal, maps to INFO level)
Level 2: Medium logs including warnings (maps to WARNING level)
Level 3: Detailed debug information (maps to DEBUG level)
model_name: Optional model name for the AI (e.g. "gpt-4o").
dom_settle_timeout_ms: Additional time (in ms) to have the DOM settle.
debug_dom: Enable debug mode for DOM operations.
stream_response: Whether to stream responses from the server (default: True).
timeout_settings: Custom timeout settings for HTTP requests.
Example using a unified configuration:
from stagehand import StagehandConfig
import os
config = StagehandConfig(
env="BROWSERBASE"if os.getenv("BROWSERBASE_API_KEY") and os.getenv("BROWSERBASE_PROJECT_ID") else"LOCAL",
api_key=os.getenv("BROWSERBASE_API_KEY"),
project_id=os.getenv("BROWSERBASE_PROJECT_ID"),
debug_dom=True,
headless=False,
dom_settle_timeout_ms=3000,
model_name="gpt-4o-mini",
model_client_options={"apiKey": os.getenv("MODEL_API_KEY")},
verbose=3# Set verbosity level: 1=minimal, 2=medium, 3=detailed logs
)
License
MIT License (c) 2025 Browserbase, Inc.
FAQs
Python SDK for Stagehand
We found that stagehand-py demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago.It has 2 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
A phishing attack targeted developers using a typosquatted npm domain (npnjs.com) to steal credentials via fake login pages - watch out for similar scams.