Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Python package for time-frequency analysis through Stockwell transform.
Based on original code from NIMH MEG Core Facility.
If you use Anaconda, the latest release of Stockwell is available via conda-forge.
To install, simply run:
conda install -c conda-forge stockwell
The latest release of Stockwell is available on the Python Package Index.
You can install it easily through pip
:
pip install stockwell
If no precompiled package is available for you architecture on PyPI, or if you want to work on the source code, you will need to compile this package from source.
To obtain the source code, download the latest release from the releases page, or clone the GitHub project.
Part of Stockwell is written in C, so you will need a C compiler.
On Linux (Debian or Ubuntu), install the build-essential
package:
sudo apt install build-essential
On macOS, install the XCode Command Line Tools:
xcode-select --install
On Windows, install the Microsoft C++ Build Tools.
To compile Stockwell, you will need to have FFTW installed.
On Linux and macOS, you can download and compile FFTW from source using
the script get_fftw3.sh
provided in the scripts
directory:
./scripts/get_fftw3.sh
Alternatively, you can install FFTW using your package manager:
If you use Anaconda (Linux, macOS, Windows):
conda install fftw
If you use Homebrew (macOS)
brew install fftw
If you use apt
(Debian or Ubuntu)
sudo apt install libfftw3-dev
Finally, install this Python package using pip:
pip install .
Or, alternatively, in "editable" mode:
pip install -e .
Example usage:
import numpy as np
from scipy.signal import chirp
import matplotlib.pyplot as plt
from stockwell import st
t = np.linspace(0, 10, 5001)
w = chirp(t, f0=12.5, f1=2.5, t1=10, method='linear')
fmin = 0 # Hz
fmax = 25 # Hz
df = 1./(t[-1]-t[0]) # sampling step in frequency domain (Hz)
fmin_samples = int(fmin/df)
fmax_samples = int(fmax/df)
stock = st.st(w, fmin_samples, fmax_samples)
extent = (t[0], t[-1], fmin, fmax)
fig, ax = plt.subplots(2, 1, sharex=True)
ax[0].plot(t, w)
ax[0].set(ylabel='amplitude')
ax[1].imshow(np.abs(stock), origin='lower', extent=extent)
ax[1].axis('tight')
ax[1].set(xlabel='time (s)', ylabel='frequency (Hz)')
plt.show()
You should get the following output:
You can also compute the inverse Stockwell transform, ex:
inv_stock = st.ist(stock, fmin_samples, fmax_samples)
fig, ax = plt.subplots(2, 1, sharex=True)
ax[0].plot(t, w, label='original signal')
ax[0].plot(t, inv_stock, label='inverse Stockwell')
ax[0].set(ylabel='amplitude')
ax[0].legend(loc='upper right')
ax[1].plot(t, w - inv_stock)
ax[1].set_xlim(0, 10)
ax[1].set(xlabel='time (s)', ylabel='amplitude difference')
plt.show()
Stockwell, R.G., Mansinha, L. & Lowe, R.P., 1996. Localization of the complex spectrum: the S transform, IEEE Trans. Signal Process., 44(4), 998–1001, doi:10.1109/78.492555
FAQs
Time-frequency analysis through Stockwell transform
We found that stockwell demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.