Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

tablefaker

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

tablefaker

A Python package for generating fake table data. Get data in pandas dataframe or export to Sql, Csv, Json, Excel or Parquet

  • 1.0.5
  • Source
  • PyPI
  • Socket score

Maintainers
1

Table Faker

tablefaker is a versatile Python package that empowers you to effortlessly create realistic but synthetic table data for a wide range of applications. If you need to generate test data for software development, this tool simplifies the process with an intuitive schema definition in YAML format.

Key Features

Schema Definition: Define your target schema using a simple YAML file. Specify the structure of your tables, column names, fake data generation code, and relationships. You can define multiple tables in a yaml file.

Faker and Randomization: Leverage the power of the Faker library and random data generation to create authentic-looking fake data that mimics real-world scenarios.

Multiple Output Formats: Generate fake data in various formats to suit your needs

  • Pandas Dataframe
  • Sql insert script
  • CSV File
  • Parquet File
  • JSON File
  • Excel File

Installation

pip install tablefaker

Sample Yaml File

version: 1
config:
  locale: en_US
  python_import:
    - datetime
tables:
  - table_name: person
    row_count: 10
    columns:
      - column_name: id
        data: row_id
      - column_name: first_name
        data: fake.first_name()
        type: string
      - column_name: last_name
        data: fake.last_name()
        type: string
      - column_name: age
        data: fake.random_int(18, 90)
        type: int32
      - column_name: dob
        data: fake.date_of_birth()
        null_percentage: 0.20
      - column_name: salary
        data: None                # NULL
      - column_name: height
        data: r"170 cm"        # string
      - column_name: weight
        data: 150                 # number
      - column_name: today
        data: datetime.datetime.today().strftime('%Y-%m-%d')  # python package
  - table_name: employee
    row_count: 5
    columns:
      - column_name: id
        data: row_id
      - column_name: person_id
        data: fake.random_int(1, 10)
      - column_name: hire_date
        data: fake.date_between()

full yml example

Data Generation

You can define your dummy data generation logic in a Python function. The Faker and random packages are pre-imported and ready to use.

  • Use the Faker package for realistic data, e.g., fake.first_name() or fake.random_int(1, 10).
  • Use the random package for basic randomness, e.g., random.choice(["male", "female"]).

You can write your logic in a single line or multiple lines, depending on your preference. A built-in function, row_id, provides a unique integer for each row.

Columns will automatically have the best-fitting data type. However, if you'd like to specify a data type, use the type keyword. You can assign data types using NumPy dtypes, Pandas ExtensionDtypes, or Python native types.

Here are some examples:

fake.first_name()
fake.random_int(1, 10)
random.choice(["male", "female"])
911 # number
r"170 cm" # string

Sample Code

import tablefaker

# exports to current folder in csv format
tablefaker.to_csv("test_table.yaml")

# exports to sql insert into scripts to insert to your database
tablefaker.to_sql("test_table.yaml")

# exports all tables in json format
tablefaker.to_json("test_table.yaml", "./target_folder")

# exports all tables in parquet format
tablefaker.to_parquet("test_table.yaml", "./target_folder")

# exports only the first table in excel format
tablefaker.to_excel("test_table.yaml", "./target_folder/target_file.xlsx")

# get as pandas dataframes
df_dict = tablefaker.to_pandas("test_table.yaml")
person_df = df_dict["person"]
print(person_df.head(5))

Sample CLI Command

You can use tablefaker in your terminal for adhoc needs or shell script to automate fake data generation.
Faker custom providers and custom functions are not supported in CLI.

# exports to current folder in csv format
tablefaker --config test_table.yaml

# exports as sql insert into script files
tablefaker --config test_table.yaml --file_type sql

# exports to current folder in excel format
tablefaker --config test_table.yaml --file_type excel

# exports all tables in json format
tablefaker --config test_table.yaml --file_type json --target ./target_folder 

# exports only the first table
tablefaker --config test_table.yaml --file_type parquet --target ./target_folder/target_file.parquet

Sample CSV Output

id,first_name,last_name,age,dob,salary,height,weight
1,John,Smith,35,1992-01-11,,170 cm,150
2,Charles,Shepherd,27,1987-01-02,,170 cm,150
3,Troy,Johnson,42,,170 cm,150
4,Joshua,Hill,86,1985-07-11,,170 cm,150
5,Matthew,Johnson,31,1940-03-31,,170 cm,150

Sample Sql Output

INSERT INTO employee
(id,person_id,hire_date,title,salary,height,weight,school,level)
VALUES
(1, 4, '2020-10-09', 'principal engineer', NULL, '170 cm', 150, 'ISLIP HIGH SCHOOL', 'level 2'),
(2, 9, '2002-12-20', 'principal engineer', NULL, '170 cm', 150, 'GUY-PERKINS HIGH SCHOOL', 'level 1'),
(3, 2, '1996-01-06', 'principal engineer', NULL, '170 cm', 150, 'SPRINGLAKE-EARTH ELEM/MIDDLE SCHOOL', 'level 3');

Custom Faker Providers

You can add and use custom / community faker providers with table faker.
Here is a list of these community providers.
https://faker.readthedocs.io/en/master/communityproviders.html#

version: 1
config:
  locale: en_US
tables:
  - table_name: employee
    row_count: 5
    columns:
      - column_name: id
        data: row_id
      - column_name: person_id
        data: fake.random_int(1, 10)
      - column_name: hire_date
        data: fake.date_between()
      - column_name: school
        data: fake.school_name()  # custom provider
import tablefaker

# import the custom faker provider
from faker_education import SchoolProvider

# provide the faker provider class to the tablefaker using fake_provider
# you can add a single provider or a list of providers
tablefaker.to_csv("test_table.yaml", "./target_folder", fake_provider=SchoolProvider)
# this works with all other to_ methods as well.

Custom Functions

With Table Faker, you have the flexibility to provide your own custom functions to generate column data. This advanced feature empowers developers to create custom fake data generation logic that can pull data from a database, API, file, or any other source as needed.
You can also supply multiple functions in a list, allowing for even more versatility.
The custom function you provide should return a single value, giving you full control over your synthetic data generation.

from tablefaker import tablefaker
from faker import Faker

fake = Faker()
def get_level():
    return f"level {fake.random_int(1, 5)}"

tablefaker.to_csv("test_table.yaml", "./target_folder", custom_function=get_level)

Add get_level function to your yaml file

version: 1
config:
  locale: en_US
tables:
  - table_name: employee
    row_count: 5
    columns:
      - column_name: id
        data: row_id
      - column_name: person_id
        data: fake.random_int(1, 10)
      - column_name: hire_date
        data: fake.date_between()
      - column_name: level
        data: get_level() # custom function

Faker Functions List

https://faker.readthedocs.io/en/master/providers.html#

Bug Report & New Feature Request

https://github.com/necatiarslan/table-faker/issues/new

TODO

  • Add Target File name to the yaml file
  • Variables
  • Foreign key

Nice To Have

  • Pyarrow table
  • Use Logging package

Follow me on linkedin to get latest news
https://www.linkedin.com/in/necati-arslan/

Thanks,
Necati ARSLAN
necatia@gmail.com

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc