Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
TensorFlow Probability is a library for probabilistic reasoning and statistical analysis in TensorFlow. As part of the TensorFlow ecosystem, TensorFlow Probability provides integration of probabilistic methods with deep networks, gradient-based inference via automatic differentiation, and scalability to large datasets and models via hardware acceleration (e.g., GPUs) and distributed computation.
TFP also works as "Tensor-friendly Probability" in pure JAX!:
from tensorflow_probability.substrates import jax as tfp
--
Learn more here.
Our probabilistic machine learning tools are structured as follows.
Layer 0: TensorFlow. Numerical operations. In particular, the LinearOperator
class enables matrix-free implementations that can exploit special structure
(diagonal, low-rank, etc.) for efficient computation. It is built and maintained
by the TensorFlow Probability team and is now part of
tf.linalg
in core TF.
Layer 1: Statistical Building Blocks
tfp.distributions
):
A large collection of probability
distributions and related statistics with batch and
broadcasting
semantics. See the
Distributions Tutorial.tfp.bijectors
):
Reversible and composable transformations of random variables. Bijectors
provide a rich class of transformed distributions, from classical examples
like the
log-normal distribution
to sophisticated deep learning models such as
masked autoregressive flows.Layer 2: Model Building
tfp.distributions.JointDistributionSequential
):
Joint distributions over one or more possibly-interdependent distributions.
For an introduction to modeling with TFP's JointDistribution
s, check out
this colabtfp.layers
):
Neural network layers with uncertainty over the functions they represent,
extending TensorFlow Layers.Layer 3: Probabilistic Inference
tfp.mcmc
):
Algorithms for approximating integrals via sampling. Includes
Hamiltonian Monte Carlo,
random-walk Metropolis-Hastings, and the ability to build custom transition
kernels.tfp.vi
):
Algorithms for approximating integrals via optimization.tfp.optimizer
):
Stochastic optimization methods, extending TensorFlow Optimizers. Includes
Stochastic Gradient Langevin Dynamics.tfp.monte_carlo
):
Tools for computing Monte Carlo expectations.TensorFlow Probability is under active development. Interfaces may change at any time.
See tensorflow_probability/examples/
for end-to-end examples. It includes tutorial notebooks such as:
It also includes example scripts such as:
Representation learning with a latent code and variational inference.
For additional details on installing TensorFlow, guidance installing prerequisites, and (optionally) setting up virtual environments, see the TensorFlow installation guide.
To install the latest stable version, run the following:
# Notes:
# - The `--upgrade` flag ensures you'll get the latest version.
# - The `--user` flag ensures the packages are installed to your user directory
# rather than the system directory.
# - TensorFlow 2 packages require a pip >= 19.0
python -m pip install --upgrade --user pip
python -m pip install --upgrade --user tensorflow tensorflow_probability
For CPU-only usage (and a smaller install), install with tensorflow-cpu
.
To use a pre-2.0 version of TensorFlow, run:
python -m pip install --upgrade --user "tensorflow<2" "tensorflow_probability<0.9"
Note: Since TensorFlow is not included
as a dependency of the TensorFlow Probability package (in setup.py
), you must
explicitly install the TensorFlow package (tensorflow
or tensorflow-cpu
).
This allows us to maintain one package instead of separate packages for CPU and
GPU-enabled TensorFlow. See the
TFP release notes for more
details about dependencies between TensorFlow and TensorFlow Probability.
There are also nightly builds of TensorFlow Probability under the pip package
tfp-nightly
, which depends on one of tf-nightly
or tf-nightly-cpu
.
Nightly builds include newer features, but may be less stable than the
versioned releases. Both stable and nightly docs are available
here.
python -m pip install --upgrade --user tf-nightly tfp-nightly
You can also install from source. This requires the Bazel build system. It is highly recommended that you install
the nightly build of TensorFlow (tf-nightly
) before trying to build
TensorFlow Probability from source. The most recent version of Bazel that TFP
currently supports is 6.4.0; support for 7.0.0+ is WIP.
# sudo apt-get install bazel git python-pip # Ubuntu; others, see above links.
python -m pip install --upgrade --user tf-nightly
git clone https://github.com/tensorflow/probability.git
cd probability
bazel build --copt=-O3 --copt=-march=native :pip_pkg
PKGDIR=$(mktemp -d)
./bazel-bin/pip_pkg $PKGDIR
python -m pip install --upgrade --user $PKGDIR/*.whl
As part of TensorFlow, we're committed to fostering an open and welcoming environment.
See the TensorFlow Community page for more details. Check out our latest publicity here:
We're eager to collaborate with you! See CONTRIBUTING.md
for a guide on how to contribute. This project adheres to TensorFlow's
code of conduct. By participating, you are expected to
uphold this code.
If you use TensorFlow Probability in a paper, please cite:
(We're aware there's a lot more to TensorFlow Probability than Distributions, but the Distributions paper lays out our vision and is a fine thing to cite for now.)
FAQs
Probabilistic modeling and statistical inference in TensorFlow
We found that tfp-nightly demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 3 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.