Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

tinyec

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

tinyec

A tiny library to perform arithmetic operations on elliptic curves in pure python

  • 0.4.0
  • PyPI
  • Socket score

Maintainers
1

tinyec

A tiny library to perform arithmetic operations on elliptic curves in pure python. No dependencies.

This is not a library suitable for production. It is useful for security professionals to understand the inner workings of EC, and be able to play with pre-defined curves.

installation

pip install tinyec

usage

There are 2 main classes:

  • Curve(), which describes an elliptic curve in a finite field
  • Point(), which describes a point belonging to an EC

Warning Calculation on points outside the curve are allowed. They will only raise a warning.

working on existing curves

Example use on the NIST routine samples => https://www.nsa.gov/ia/_files/nist-routines.pdf:

>>> import tinyec.ec as ec
>>> import tinyec.registry as reg
>>> c = reg.get_curve("secp192r1")
>>> s = ec.Point(c, 0xd458e7d127ae671b0c330266d246769353a012073e97acf8, 0x325930500d851f336bddc050cf7fb11b5673a1645086df3b)
>>> t = ec.Point(c, 0xf22c4395213e9ebe67ddecdd87fdbd01be16fb059b9753a4, 0x264424096af2b3597796db48f8dfb41fa9cecc97691a9c79)
>>> r = s + t
>>> r
(1787070900316344022479363585363935252075532448940096815760, 1583034776780933252095415958625802984888372377603917916747) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065 
(mod 6277101735386680763835789423207666416083908700390324961279)
>>> hex(r.x)
'0x48e1e4096b9b8e5ca9d0f1f077b8abf58e843894de4d0290L'
>>> hex(r.y)
'0x408fa77c797cd7dbfb16aa48a3648d3d63c94117d7b6aa4bL'
>>> r = s - t
>>> r
(6193438478050209507979672067809269724375390027440522152494, 226636415264149817017346905052752138772359775362461041003) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065 (
mod 6277101735386680763835789423207666416083908700390324961279)
>>> hex(r.x)
'0xfc9683cc5abfb4fe0cc8cc3bc9f61eabc4688f11e9f64a2eL'
>>> hex(r.y)
'0x93e31d00fb78269732b1bd2a73c23cdd31745d0523d816bL'
>>> r = 2 * s
>>> r
(1195895923065450997501505402941681398272052708885411031394, 340030206158745947396451508065335698335058477174385838543) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065 (
mod 6277101735386680763835789423207666416083908700390324961279)
>>> hex(r.x)
'0x30c5bc6b8c7da25354b373dc14dd8a0eba42d25a3f6e6962L'
>>> hex(r.y)
'0xdde14bc4249a721c407aedbf011e2ddbbcb2968c9d889cfL'
>>> d = 0xa78a236d60baec0c5dd41b33a542463a8255391af64c74ee
>>> r = d * s
>>> hex(r.x)
'0x1faee4205a4f669d2d0a8f25e3bcec9a62a6952965bf6d31L'
>>> hex(r.y)
'0x5ff2cdfa508a2581892367087c696f179e7a4d7e8260fb06L'
>>> e = 0xc4be3d53ec3089e71e4de8ceab7cce889bc393cd85b972bc
>>> r = d * s + e * t
>>> r
(39786866609245082371772779541859439402855864496422607838, 547967566579883709478937502153554894699060378424501614148) on secp192r1 => y^2 = x^3 + 6277101735386680763835789423207666416083908700390324961276x + 2455155546008943817740293915197451784769108058161191238065 (mo
d 6277101735386680763835789423207666416083908700390324961279)
>>> hex(r.x)
'0x19f64eed8fa9b72b7dfea82c17c9bfa60ecb9e1778b5bdeL'
>>> hex(r.y)
'0x16590c5fcd8655fa4ced33fb800e2a7e3c61f35d83503644L'

working on custom curves

If needed, you can also work on your own curves. Here we take a a prime field 97, with a generator point (1, 2), an order 5 and a cofactor of 1:

>>> import tinyec.ec as ec
>>> field = ec.SubGroup(97, (1, 2), 5, 1)
>>> curve = ec.Curve(2, 3, field)
tinyec/ec.py:115: UserWarning: Point (1, 2) is not on curve "undefined" => y^2 = x^3 + 2x + 3 (mod 97)
  warnings.warn("Point (%d, %d) is not on curve %s" % (self.x, self.y, self.curve))
>>> # Warning is generated because the generator point does not belong to the curve
>>> p1 = ec.Point(curve, -5, 3)
>>> p1.on_curve
False
>>> p2 = ec.Point(curve, 22, 5)
>>> p2.on_curve
True
>>> print(p1 + p2)
(18, 42) off "undefined" => y^2 = x^3 + 2x + 3 (mod 97)

Keywords

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc