
Security News
GitHub Actions Pricing Whiplash: Self-Hosted Actions Billing Change Postponed
GitHub postponed a new billing model for self-hosted Actions after developer pushback, but moved forward with hosted runner price cuts on January 1.
torequests
Advanced tools
Async wrapper for requests / aiohttp, and some python crawler toolkits. Let synchronization code enjoy the performance of asynchronous programming. Read more: https://github.com/ClericPy/torequests.
Briefly speaking, requests & aiohttp wrapper for asynchronous programming rookie, to shorten the code quantity.
pip install torequests -U
python3.7+ (follow requests settings)
| requests # python
| aiohttp >= 3.6.2 # python3
Inspired by tomorrow, to make async-coding brief & smooth, compatible for win32 / python 2&3.
requests-like.response_validator)from torequests import threads, Async
import time
@threads(5)
def test1(n):
time.sleep(n)
return 'test1 ok'
def test2(n):
time.sleep(n)
return 'test1 ok'
start = int(time.time())
# here async_test2 is same as test1
async_test2 = Async(test2)
future = test1(1)
# future run in non blocking thread pool
print(future, ', %s s passed' % (int(time.time() - start)))
# call future.x will block main thread and get the future.result()
print(future.x, ', %s s passed' % (int(time.time() - start)))
# output:
# <NewFuture at 0x34b1d30 state=running> , 0 s passed
# test1 ok , 1 s passed
from torequests.main import tPool
from torequests.logs import print_info
from torequests.utils import ttime
req = tPool()
test_url = 'http://p.3.cn'
def callback(task):
return (len(task.content),
print_info(
ttime(task.task_start_time), '-> ', ttime(task.task_end_time),
',', round(task.task_cost_time * 1000), 'ms'))
ss = [req.get(test_url, retry=2, callback=callback) for i in range(3)]
# or [i.x for i in ss]
req.x
# task.cx returns the callback_result
ss = [i.cx for i in ss]
print_info(ss)
# [2020-01-21 16:56:23] temp_code.py(11): 2020-01-21 16:56:23 -> 2020-01-21 16:56:23 , 54 ms
# [2020-01-21 16:56:23] temp_code.py(11): 2020-01-21 16:56:23 -> 2020-01-21 16:56:23 , 55 ms
# [2020-01-21 16:56:23] temp_code.py(11): 2020-01-21 16:56:23 -> 2020-01-21 16:56:23 , 57 ms
# [2020-01-21 16:56:23] temp_code.py(18): [(612, None), (612, None), (612, None)]
[3.7.1 (v3.7.1:260ec2c36a, Oct 20 2018, 14:57:15) [MSC v.1915 64 bit (AMD64)]]: 2000 / 2000, 100.0%, cost 4.2121 seconds, 475.0 qps.
import timeit
from torequests import tPool
import sys
req = tPool()
start_time = timeit.default_timer()
oks = 0
total = 2000
# concurrent all the tasks
tasks = [req.get('http://127.0.0.1:8080') for num in range(total)]
for task in tasks:
r = task.x
if r.text == 'ok':
oks += 1
end_time = timeit.default_timer()
succ_rate = oks * 100 / total
cost_time = round(end_time - start_time, 4)
version = sys.version
qps = round(total / cost_time, 0)
print(
'[{version}]: {oks} / {total}, {succ_rate}%, cost {cost_time} seconds, {qps} qps.'
.format(**vars()))
from torequests.dummy import Requests
from torequests.logs import print_info
from torequests.utils import ttime
req = Requests(frequencies={'p.3.cn': (2, 1)})
def callback(task):
return (len(task.content),
print_info(
ttime(task.task_start_time), '->', ttime(task.task_end_time),
',', round(task.task_cost_time * 1000), 'ms'))
ss = [
req.get('http://p.3.cn', retry=1, timeout=5, callback=callback)
for i in range(4)
]
req.x # this line can be removed
ss = [i.cx for i in ss]
print_info(ss)
# [2020-01-21 18:15:33] temp_code.py(11): 2020-01-21 18:15:32 -> 2020-01-21 18:15:33 , 1060 ms
# [2020-01-21 18:15:33] temp_code.py(11): 2020-01-21 18:15:32 -> 2020-01-21 18:15:33 , 1061 ms
# [2020-01-21 18:15:34] temp_code.py(11): 2020-01-21 18:15:32 -> 2020-01-21 18:15:34 , 2081 ms
# [2020-01-21 18:15:34] temp_code.py(11): 2020-01-21 18:15:32 -> 2020-01-21 18:15:34 , 2081 ms
# [2020-01-21 18:15:34] temp_code.py(20): [(612, None), (612, None), (612, None), (612, None)]
aiohttp is almostly 3 times faster than requests + ThreadPoolExecutor, even without uvloop on windows10.
3.7.1 (v3.7.1:260ec2c36a, Oct 20 2018, 14:57:15) [MSC v.1915 64 bit (AMD64)]
sync_test: 2000 / 2000, 100.0%, cost 1.2965 seconds, 1543.0 qps.
async_test: 2000 / 2000, 100.0%, cost 1.2834 seconds, 1558.0 qps.
Sync usage has little performance lost.
import asyncio
import sys
import timeit
from torequests.dummy import Requests
def sync_test():
with Requests() as req:
start_time = timeit.default_timer()
oks = 0
total = 2000
# concurrent all the tasks
tasks = [req.get('http://127.0.0.1:8080') for num in range(total)]
req.x
for task in tasks:
if task.text == 'ok':
oks += 1
end_time = timeit.default_timer()
succ_rate = oks * 100 / total
cost_time = round(end_time - start_time, 4)
qps = round(total / cost_time, 0)
print(
f'sync_test: {oks} / {total}, {succ_rate}%, cost {cost_time} seconds, {qps} qps.'
)
async def async_test():
req = Requests()
async with Requests() as req:
start_time = timeit.default_timer()
oks = 0
total = 2000
# concurrent all the tasks
tasks = [req.get('http://127.0.0.1:8080') for num in range(total)]
for task in tasks:
r = await task
if r.text == 'ok':
oks += 1
end_time = timeit.default_timer()
succ_rate = oks * 100 / total
cost_time = round(end_time - start_time, 4)
qps = round(total / cost_time, 0)
print(
f'async_test: {oks} / {total}, {succ_rate}%, cost {cost_time} seconds, {qps} qps.'
)
if __name__ == "__main__":
print(sys.version)
sync_test()
loop = asyncio.get_event_loop()
loop.run_until_complete(async_test())
import asyncio
import uvicorn
from starlette.applications import Starlette
from starlette.responses import PlainTextResponse
from torequests.dummy import Requests
api = Starlette()
api.req = Requests()
@api.route('/')
async def index(req):
# await for Response or FailureException
r = await api.req.get('http://p.3.cn', timeout=(1, 1))
return PlainTextResponse(r.content)
if __name__ == "__main__":
uvicorn.run(api)
Removes the frequency_controller & sync usage (task.x) & compatible args of requests for good performance, but remains retry / callback / referer_info.
# -*- coding: utf-8 -*-
from torequests.aiohttp_dummy import Requests
from asyncio import get_event_loop
async def main():
url = 'http://httpbin.org/json'
# simple usage, catch_exception defaults to True
async with Requests() as req:
r = await req.get(url, retry=1, encoding='u8', timeout=3)
print(r.ok)
print(r.url)
print(r.content[:5])
print(r.status_code)
print(r.text[:5])
print(r.json()['slideshow']['title'])
print(r.is_redirect)
print(r.encoding)
# or use `req = Requests()` without context
req = Requests()
r = await req.get(
url,
referer_info=123,
callback=lambda r: r.referer_info + 1,
)
print(r) # 124
get_event_loop().run_until_complete(main())
ClipboardWatcher: watch your clipboard changing.
Counts: counter while every time being called.
Null: will return self when be called, and alway be False.
Regex: Regex Mapper for string -> regex -> object.
Saver: simple object persistent toolkit with pickle/json.
Timer: timing tool.
UA: some common User-Agents for crawler.
curlparse: translate curl-string into dict of request.
md5: str(obj) -> md5_string.
print_mem: show the proc-mem-cost with psutil, use this only for lazinesssss.
ptime: %Y-%m-%d %H:%M:%S -> timestamp.
ttime: timestamp -> %Y-%m-%d %H:%M:%S
slice_by_size: slice a sequence into chunks, return as a generation of chunks with size.
slice_into_pieces: slice a sequence into n pieces, return a generation of n pieces.
timeago: show the seconds as human-readable.
unique: unique one sequence.
find_one: use regex like Javascript to find one string with index(like [0], [1]).
find_jsons: find all json substrings from a mass string contains list / dict JSON.
...
Benchmark of concurrent is not very necessary and accurate, just take a look.
Source code: go_test_server.go
Source code: py_test_client.py
Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz (12 CPUs), ~2.2GHz; 12 logical CPUs.
Windows-10-10.0.18362-SP0
3.7.1 (v3.7.1:260ec2c36a, Oct 20 2018, 14:57:15) [MSC v.1915 64 bit (AMD64)]
['aiohttp(3.6.2)', 'torequests(4.9.14)', 'requests(2.23.0)', 'httpx(0.12.1)']
================================================================================
test_aiohttp : 2000 / 2000 = 100.0%, cost 1.289s, 1551 qps, 100% standard.
test_dummy : 2000 / 2000 = 100.0%, cost 1.397s, 1432 qps, 92% standard.
test_aiohttp_dummy : 2000 / 2000 = 100.0%, cost 1.341s, 1491 qps, 96% standard.
test_httpx : 2000 / 2000 = 100.0%, cost 4.065s, 492 qps, 32% standard.
test_tPool : 2000 / 2000 = 100.0%, cost 5.161s, 388 qps, 25% standard.
Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz; 1 logical CPU.
Linux-4.15.0-13-generic-x86_64-with-Ubuntu-18.04-bionic
3.7.3 (default, Apr 3 2019, 19:16:38)
[GCC 8.0.1 20180414 (experimental) [trunk revision 259383]]
['aiohttp(3.6.2)', 'torequests(4.9.14)', 'requests(2.23.0)', 'httpx(0.12.1)']
================================================================================
test_aiohttp : 2000 / 2000 = 100.0%, cost 0.652s, 3068 qps, 100% standard.
test_dummy : 2000 / 2000 = 100.0%, cost 0.802s, 2495 qps, 81% standard.
test_aiohttp_dummy : 2000 / 2000 = 100.0%, cost 0.726s, 2754 qps, 90% standard.
test_httpx : 2000 / 2000 = 100.0%, cost 2.349s, 852 qps, 28% standard.
test_tPool : 2000 / 2000 = 100.0%, cost 2.708s, 739 qps, 24% standard.
golang - net/http 's performance
`2000 / 2000, 100.00 %, cost 0.26 seconds, 7567.38 qps` on windows (12 cpus)
`2000 / 2000, 100.00 %, cost 0.61 seconds, 3302.48 qps` on linux (1 cpu)
1. slower than windows, because golang benefit from multiple CPU count
2. linux 1 cpu, but windows is 12
golang http client testing code:
FAQs
Async wrapper for requests / aiohttp, and some python crawler toolkits. Let synchronization code enjoy the performance of asynchronous programming. Read more: https://github.com/ClericPy/torequests.
We found that torequests demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Security News
GitHub postponed a new billing model for self-hosted Actions after developer pushback, but moved forward with hosted runner price cuts on January 1.

Research
Destructive malware is rising across open source registries, using delays and kill switches to wipe code, break builds, and disrupt CI/CD.

Security News
Socket CTO Ahmad Nassri shares practical AI coding techniques, tools, and team workflows, plus what still feels noisy and why shipping remains human-led.