=================
Tree Shade Mapper
.. image:: https://img.shields.io/pypi/v/tree-shade-mapper.svg
:target: https://pypi.python.org/pypi/tree-shade-mapper
:alt: PyPI Version
.. image:: https://colab.research.google.com/assets/colab-badge.svg
:target: https://colab.research.google.com/drive/1fUcqN6aSLGZnzzahIZiy_AkigFn5gY2e?usp=sharing
:alt: Open In Colab
Python package to calculate the shading effect of tree canopies from panoramic imagery
Features
Citation
Please cite the paper_ if you use Tree Shade Mapper
in a scientific publication:
.. _paper: https://doi.org/10.1016/j.buildenv.2024.112071
.. code-block:: bibtex
@article{2024_bae_svf,
author = {Fujiwara, Kunihiko and Ito, Koichi and Ignatius, Marcel and Biljecki, Filip},
doi = {10.1016/j.buildenv.2024.112071},
journal = {Building and Environment},
pages = {112071},
title = {A panorama-based technique to estimate sky view factor and solar irradiance considering transmittance of tree canopies},
volume = {266},
year = {2024}
}
.. .. code-block:: bibtex
.. @article{ito2024zensvi,
.. title={ZenSVI: One-Stop Python Package for Integrated Analysis of Street View Imagery},
.. author={Ito, Koichi, XXX, XXX, XXX, ...},
.. journal={XXX},
.. volume={XXX},
.. pages={XXX},
.. year={2024}
.. }
Credits
This package uses ZenSVI
for semantic segmentation.
This package was created with Cookiecutter_ and the audreyr/cookiecutter-pypackage
_ project template.
.. _ZenSVI: https://github.com/koito19960406/ZenSVI
.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _audreyr/cookiecutter-pypackage
: https://github.com/audreyr/cookiecutter-pypackage