Research
Security News
Malicious npm Package Targets Solana Developers and Hijacks Funds
A malicious npm package targets Solana developers, rerouting funds in 2% of transactions to a hardcoded address.
ultralytics-yolov10-rknn
Advanced tools
Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
Official PyTorch implementation of YOLOv10.
Comparisons with others in terms of latency-accuracy (left) and size-accuracy (right) trade-offs.
YOLOv10: Real-Time End-to-End Object Detection.
Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jungong Han, and Guiguang Ding
cv2
and cv3
operations in the v10Detect
are executed during inference.COCO
Model | Test Size | #Params | FLOPs | APval | Latency |
---|---|---|---|---|---|
YOLOv10-N | 640 | 2.3M | 6.7G | 38.5% | 1.84ms |
YOLOv10-S | 640 | 7.2M | 21.6G | 46.3% | 2.49ms |
YOLOv10-M | 640 | 15.4M | 59.1G | 51.1% | 4.74ms |
YOLOv10-B | 640 | 19.1M | 92.0G | 52.5% | 5.74ms |
YOLOv10-L | 640 | 24.4M | 120.3G | 53.2% | 7.28ms |
YOLOv10-X | 640 | 29.5M | 160.4G | 54.4% | 10.70ms |
conda
virtual environment is recommended.
conda create -n yolov10 python=3.9
conda activate yolov10
pip install -r requirements.txt
pip install -e .
python app.py
# Please visit http://127.0.0.1:7860
yolov10n
yolov10s
yolov10m
yolov10b
yolov10l
yolov10x
yolo val model=jameslahm/yolov10{n/s/m/b/l/x} data=coco.yaml batch=256
Or
from ultralytics import YOLOv10
model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}')
# or
# wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt
model = YOLOv10('yolov10{n/s/m/b/l/x}.pt')
model.val(data='coco.yaml', batch=256)
yolo detect train data=coco.yaml model=yolov10n/s/m/b/l/x.yaml epochs=500 batch=256 imgsz=640 device=0,1,2,3,4,5,6,7
Or
from ultralytics import YOLOv10
model = YOLOv10()
# If you want to finetune the model with pretrained weights, you could load the
# pretrained weights like below
# model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}')
# or
# wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt
# model = YOLOv10('yolov10{n/s/m/b/l/x}.pt')
model.train(data='coco.yaml', epochs=500, batch=256, imgsz=640)
Optionally, you can push your fine-tuned model to the Hugging Face hub as a public or private model:
# let's say you have fine-tuned a model for crop detection
model.push_to_hub("<your-hf-username-or-organization/yolov10-finetuned-crop-detection")
# you can also pass `private=True` if you don't want everyone to see your model
model.push_to_hub("<your-hf-username-or-organization/yolov10-finetuned-crop-detection", private=True)
Note that a smaller confidence threshold can be set to detect smaller objects or objects in the distance. Please refer to here for details.
yolo predict model=jameslahm/yolov10{n/s/m/b/l/x}
Or
from ultralytics import YOLOv10
model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}')
# or
# wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt
model = YOLOv10('yolov10{n/s/m/b/l/x}.pt')
model.predict()
# End-to-End ONNX
yolo export model=jameslahm/yolov10{n/s/m/b/l/x} format=onnx opset=13 simplify
# Predict with ONNX
yolo predict model=yolov10n/s/m/b/l/x.onnx
# End-to-End TensorRT
yolo export model=jameslahm/yolov10{n/s/m/b/l/x} format=engine half=True simplify opset=13 workspace=16
# or
trtexec --onnx=yolov10n/s/m/b/l/x.onnx --saveEngine=yolov10n/s/m/b/l/x.engine --fp16
# Predict with TensorRT
yolo predict model=yolov10n/s/m/b/l/x.engine
Or
from ultralytics import YOLOv10
model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}')
# or
# wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt
model = YOLOv10('yolov10{n/s/m/b/l/x}.pt')
model.export(...)
The code base is built with ultralytics and RT-DETR.
Thanks for the great implementations!
If our code or models help your work, please cite our paper:
@article{wang2024yolov10,
title={YOLOv10: Real-Time End-to-End Object Detection},
author={Wang, Ao and Chen, Hui and Liu, Lihao and Chen, Kai and Lin, Zijia and Han, Jungong and Ding, Guiguang},
journal={arXiv preprint arXiv:2405.14458},
year={2024}
}
FAQs
Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
We found that ultralytics-yolov10-rknn demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
A malicious npm package targets Solana developers, rerouting funds in 2% of transactions to a hardcoded address.
Security News
Research
Socket researchers have discovered malicious npm packages targeting crypto developers, stealing credentials and wallet data using spyware delivered through typosquats of popular cryptographic libraries.
Security News
Socket's package search now displays weekly downloads for npm packages, helping developers quickly assess popularity and make more informed decisions.