You're Invited:Meet the Socket Team at BlackHat and DEF CON in Las Vegas, Aug 4-6.RSVP

ultralyticsplus

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

ultralyticsplus

HuggingFace utilities for Ultralytics/YOLOv8.

0.1.0
70

Supply Chain Security

100

Vulnerability

86

Quality

94

Maintenance

100

License

Maintainers
1

ultralytics+

Extra features for ultralytics/ultralytics.

installation

pip install ultralyticsplus

push to 🤗 hub

ultralyticsplus --exp_dir runs/detect/train --hf_model_id HF_USERNAME/MODELNAME

load from 🤗 hub

from ultralyticsplus import YOLO, render_result

# load model
model = YOLO('HF_USERNAME/MODELNAME')

# set model parameters
model.overrides['conf'] = 0.25  # NMS confidence threshold
model.overrides['iou'] = 0.45  # NMS IoU threshold
model.overrides['agnostic_nms'] = False  # NMS class-agnostic
model.overrides['max_det'] = 1000  # maximum number of detections per image

# set image
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'

# perform inference
results = model.predict(image, imgsz=640)

# parse results
result = results[0]
boxes = result.boxes.xyxy # x1, y1, x2, y2
scores = result.boxes.conf
categories = result.boxes.cls
scores = result.probs # for classification models
masks = result.masks # for segmentation models

# show results on image
render = render_result(model=model, image=image, result=result)
render.show()

FAQs

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts