wbpy
A Python interface to the World Bank Indicators and Climate APIs.
Readthedocs <http://wbpy.readthedocs.org/en/latest>
__Github source <https://github.com/mattduck/wbpy>
__World Bank API docs <http://data.worldbank.org/developers>
__
The Indicators API lets you access a large number of world development
indicators - country data on education, environment, gender, health,
population, poverty, technology, and more.
The Climate API lets you access modelled and historical data for
temperature and precipitation.
Why use wbpy?
- Dataset models let you access processed data and associated metadata
in different formats.
- If you don’t want processed data objects, you can still access the
raw JSON response.
- Single method calls to do the equivalent of multiple API requests,
eg. wbpy handles the specific date pairs which would otherwise be
required for the Climate API.
- Works with both ISO 1366 alpha-2 and alpha-3 country codes (the web
APIs mostly just support alpha-3).
Elsewhere, there is also
wbdata <https://github.com/OliverSherouse/wbdata>
__, a wrapper for the
Indicators API which supports Pandas structures and has some
command-line functionality.
Installation
pip install wbpy
, or download the source code and
python setup.py install
.
Contributors
@bcipolli <https://github.com/bcipolli>
__ upgraded wbpy to support
Python 3 and v2 of the world bank API.
Development and maintenance
This project was unmaintained for a couple of years, although was
updated in July 2020 to support Python 3 and to use the v2 endpoint of
the API, as v1 has not been supported for a while (thanks
@bcipolli <https://github.com/bcipolli>
__). Although I’m not actively
adding new features or looking for issues, I’m happy to accept
contributions, and to provide commit access if anybody wants to work on
the project.
Indicators API
Basic use
Here’s a small case where we already know what API codes to use:
.. code:: python
import wbpy
from pprint import pprint
api = wbpy.IndicatorAPI()
iso_country_codes = ["GB", "FR", "JP"]
total_population = "SP.POP.TOTL"
dataset = api.get_dataset(total_population, iso_country_codes, date="2010:2012")
dataset
.. parsed-literal::
http://api.worldbank.org/v2/countries/GBR;FRA;JPN/indicators/SP.POP.TOTL?date=2010%3A2012&format=json&per_page=10000
.. parsed-literal::
<wbpy.indicators.IndicatorDataset('SP.POP.TOTL', 'Population, total') with id: 140421139962456>
The IndicatorDataset
instance contains the direct API response and
various metadata. Use dataset.as_dict()
to return a tidy dictionary
of the data:
.. code:: python
dataset.as_dict()
.. parsed-literal::
{'FR': {'2012': 65659809.0, '2011': 65342780.0, '2010': 65027507.0},
'GB': {'2012': 63700215.0, '2011': 63258810.0, '2010': 62766365.0},
'JP': {'2012': 127629000.0, '2011': 127833000.0, '2010': 128070000.0}}
Some examples of the metadata available:
.. code:: python
dataset.api_url
.. parsed-literal::
'http://api.worldbank.org/v2/countries/GBR;FRA;JPN/indicators/SP.POP.TOTL?date=2010%3A2012&format=json&per_page=10000'
.. code:: python
dataset.indicator_name
.. parsed-literal::
'Population, total'
.. code:: python
dataset.indicator_topics
.. parsed-literal::
http://api.worldbank.org/v2/indicator/SP.POP.TOTL?format=json&per_page=10000
.. parsed-literal::
[{'id': '19', 'value': 'Climate Change'}, {'id': '8', 'value': 'Health '}]
.. code:: python
dataset.countries
.. parsed-literal::
{'FR': 'France', 'GB': 'United Kingdom', 'JP': 'Japan'}
If you want to create your own data structures, you can process the raw
API response:
.. code:: python
dataset.api_response
.. parsed-literal::
[{'page': 1,
'pages': 1,
'per_page': 10000,
'total': 9,
'sourceid': '2',
'lastupdated': '2020-07-01'},
[{'indicator': {'id': 'SP.POP.TOTL', 'value': 'Population, total'},
'country': {'id': 'FR', 'value': 'France'},
'countryiso3code': 'FRA',
'date': '2012',
'value': 65659809,
'unit': '',
'obs_status': '',
'decimal': 0},
{'indicator': {'id': 'SP.POP.TOTL', 'value': 'Population, total'},
'country': {'id': 'FR', 'value': 'France'},
'countryiso3code': 'FRA',
'date': '2011',
'value': 65342780,
'unit': '',
'obs_status': '',
'decimal': 0},
{'indicator': {'id': 'SP.POP.TOTL', 'value': 'Population, total'},
'country': {'id': 'FR', 'value': 'France'},
'countryiso3code': 'FRA',
'date': '2010',
'value': 65027507,
'unit': '',
'obs_status': '',
'decimal': 0},
{'indicator': {'id': 'SP.POP.TOTL', 'value': 'Population, total'},
'country': {'id': 'GB', 'value': 'United Kingdom'},
'countryiso3code': 'GBR',
'date': '2012',
'value': 63700215,
'unit': '',
'obs_status': '',
'decimal': 0},
{'indicator': {'id': 'SP.POP.TOTL', 'value': 'Population, total'},
'country': {'id': 'GB', 'value': 'United Kingdom'},
'countryiso3code': 'GBR',
'date': '2011',
'value': 63258810,
'unit': '',
'obs_status': '',
'decimal': 0},
{'indicator': {'id': 'SP.POP.TOTL', 'value': 'Population, total'},
'country': {'id': 'GB', 'value': 'United Kingdom'},
'countryiso3code': 'GBR',
'date': '2010',
'value': 62766365,
'unit': '',
'obs_status': '',
'decimal': 0},
{'indicator': {'id': 'SP.POP.TOTL', 'value': 'Population, total'},
'country': {'id': 'JP', 'value': 'Japan'},
'countryiso3code': 'JPN',
'date': '2012',
'value': 127629000,
'unit': '',
'obs_status': '',
'decimal': 0},
{'indicator': {'id': 'SP.POP.TOTL', 'value': 'Population, total'},
'country': {'id': 'JP', 'value': 'Japan'},
'countryiso3code': 'JPN',
'date': '2011',
'value': 127833000,
'unit': '',
'obs_status': '',
'decimal': 0},
{'indicator': {'id': 'SP.POP.TOTL', 'value': 'Population, total'},
'country': {'id': 'JP', 'value': 'Japan'},
'countryiso3code': 'JPN',
'date': '2010',
'value': 128070000,
'unit': '',
'obs_status': '',
'decimal': 0}]]
Searching for indicators
We don’t always know what indicators we want to use, so we can search:
.. code:: python
population_indicators = api.get_indicators(search="population")
len(population_indicators)
.. parsed-literal::
http://api.worldbank.org/v2/indicator?format=json&per_page=10000
.. parsed-literal::
1591
Ah. That’s not a very manageable number. The API returns over 8000
indicator codes, and lots of them have “population” in the title.
Luckily, most of those indicators don’t really have much data, so we can
forget about them. You can browse the indicators with the best data
coverage at http://data.worldbank.org/indicator, and you can pass
common_only=True
to throw away all indicators that aren’t included
on that page:
.. code:: python
population_indicators = api.get_indicators(search="population", common_only=True)
print("There are now only %d indicators to browse." % len(population_indicators))
.. parsed-literal::
http://api.worldbank.org/v2/indicator?format=json&per_page=10000
There are now only 246 indicators to browse!
We don’t want to print that many results in the documentation, so let’s
filter some more. The API query string parameters are directly mapped to
kwargs for each method. For the get_indicators
method, this means we
can filter by topic or source:
.. code:: python
health_topic_id = 8
health_indicators = api.get_indicators(search="population", common_only=True, topic=health_topic_id)
print("We've narrowed it down to %d indicators." % len(health_indicators))
.. parsed-literal::
http://api.worldbank.org/v2/topic/8/indicator?format=json&per_page=10000
We've narrowed it down to 109 indicators.
Each indicator has a variety of metadata:
.. code:: python
pprint(list(health_indicators.items())[2])
.. parsed-literal::
('SH.DYN.AIDS.FE.ZS',
{'name': "Women's share of population ages 15+ living with HIV (%)",
'source': {'id': '2', 'value': 'World Development Indicators'},
'sourceNote': 'Prevalence of HIV is the percentage of people who are '
'infected with HIV. Female rate is as a percentage of the '
'total population ages 15+ who are living with HIV.',
'sourceOrganization': 'UNAIDS estimates.',
'topics': [{'id': '8', 'value': 'Health '}, {'id': '17', 'value': 'Gender'}],
'unit': ''})
That data might be useful, but it’s not very friendly if you just want
to grab some API codes. If that’s what you want, you can pass the
results to the print_codes
method:
.. code:: python
api.print_codes(api.get_indicators(search="tuberculosis"))
.. parsed-literal::
http://api.worldbank.org/v2/indicator?format=json&per_page=10000
SH.TBS.CURE.ZS Tuberculosis treatment success rate (% of new cases)
SH.TBS.DOTS Tuberculosis cases detected under DOTS (%)
SH.TBS.DTEC.ZS Tuberculosis case detection rate (%, all forms)
SH.TBS.INCD Incidence of tuberculosis (per 100,000 people)
SH.TBS.INCD.HG Incidence of tuberculosis, high uncertainty bound (per 100,000 people)
SH.TBS.INCD.LW Incidence of tuberculosis, low uncertainty bound (per 100,000 people)
SH.TBS.MORT Tuberculosis death rate (per 100,000 people)
SH.TBS.MORT.HG Deaths due to tuberculosis among HIV-negative people, high uncertainty bound (per 100,000 population)
SH.TBS.MORT.LW Deaths due to tuberculosis among HIV-negative people, low uncertainty bound (per 100,000 population)
SH.TBS.PREV Tuberculosis prevalence rate (per 1000,000 population, WHO)
SH.TBS.PREV.HG Tuberculosis prevalence rate, high uncertainty bound (per 1000,000 population, WHO)
SH.TBS.PREV.LW Tuberculosis prevalence rate, low uncertainty bound (per 1000,000 population, WHO)
There are get_
functions matching all API endpoints (countries,
regions, sources, etc.), and the search
parameter and
print_codes
method can be used on any of them. For example:
.. code:: python
countries = api.get_countries(search="united")
api.print_codes(countries)
.. parsed-literal::
http://api.worldbank.org/v2/country?format=json&per_page=10000
AE United Arab Emirates
GB United Kingdom
US United States
More searching
If you’re not sure what to search for, just leave out the search
parameter. By default, the get_
methods return all API results:
.. code:: python
all_regions = api.get_regions()
all_sources = api.get_sources()
print("There are %d regions and %d sources." % (len(all_regions), len(all_sources)))
.. parsed-literal::
http://api.worldbank.org/v2/region?format=json&per_page=10000
http://api.worldbank.org/v2/source?format=json&per_page=10000
There are 48 regions and 61 sources.
The search
parameter actually just calls a search_results
method, which you can use directly:
.. code:: python
pprint(api.search_results("debt", all_sources))
.. parsed-literal::
{'20': {'code': 'PSD',
'concepts': '3',
'dataavailability': 'Y',
'description': '',
'lastupdated': '2020-07-07',
'metadataavailability': 'Y',
'name': 'Quarterly Public Sector Debt',
'url': ''},
'22': {'code': 'QDS',
'concepts': '3',
'dataavailability': 'Y',
'description': '',
'lastupdated': '2020-04-30',
'metadataavailability': 'Y',
'name': 'Quarterly External Debt Statistics SDDS',
'url': ''},
'23': {'code': 'QDG',
'concepts': '3',
'dataavailability': 'Y',
'description': '',
'lastupdated': '2020-04-30',
'metadataavailability': 'Y',
'name': 'Quarterly External Debt Statistics GDDS',
'url': ''},
'54': {'code': 'JED',
'concepts': '3',
'dataavailability': 'Y',
'description': '',
'lastupdated': '2020-06-04',
'metadataavailability': '',
'name': 'Joint External Debt Hub',
'url': ''},
'6': {'code': 'IDS',
'concepts': '3',
'dataavailability': 'Y',
'description': '',
'lastupdated': '2019-12-02',
'metadataavailability': 'Y',
'name': 'International Debt Statistics',
'url': ''}}
By default, the search
parameter only searches the title of an
entity (eg. a country name, or source title). If you want to search all
fields, set the search_full
flag to True
:
.. code:: python
narrow_matches = api.get_topics(search="poverty")
wide_matches = api.get_topics(search="poverty", search_full=True)
print("%d topic(s) match(es) 'poverty' in the title field, and %d topics match 'poverty' in all fields." % (len(narrow_matches), len(wide_matches)))
.. parsed-literal::
http://api.worldbank.org/v2/topic?format=json&per_page=10000
http://api.worldbank.org/v2/topic?format=json&per_page=10000
1 topic(s) match(es) 'poverty' in the title field, and 8 topics match 'poverty' in all fields.
API options
All endpoint query string parameters are directly mapped to method
kwargs. Different kwargs are available for each get_
method
(documented in the method’s docstring).
-
language: EN
, ES
, FR
, AR
or ZH
. Non-English
languages seem to have less info in the responses.
-
date: String formats - 2001
, 2001:2006
,
2003M01:2004M06
, 2005Q2:2005Q4
. Replace the years with your
own. Not all indicators have monthly or quarterly data.
-
mrv: Most recent value, ie. mrv=3
returns the three most
recent values for an indicator.
-
gapfill: Y
or N
. If using an MRV value, fills missing
values with the next available value (I think tracking back as far as
the MRV value allows). Defaults to N
.
-
frequency: Works with MRV, can specify quarterly (Q
), monthly
(M
) or yearly (Y
). Not all indicators have monthly and
quarterly data.
-
source: ID number to filter indicators by data source.
-
topic: ID number to filter indicators by their assigned category.
Cannot give both source and topic in the same request.
-
incomelevel: List of 3-letter IDs to filter results by income
level category.
-
lendingtype: List of 3-letter IDs to filter results by lending
type.
-
region: List of 3-letter IDs to filter results by region.
If no date or MRV value is given, MRV defaults to 1, returning the
most recent value.
Any given kwarg that is not in the above list will be directly added to
the query string, eg. foo="bar"
will add &foo=bar
to the URL.
Country codes
wbpy
supports ISO 1366 alpha-2 and alpha-3 country codes. The World
Bank uses some non-ISO 2-letter and 3-letter codes for regions, which
are also supported. You can access them via the NON_STANDARD_REGIONS
attribute, which returns a dictionary of codes and region info. Again,
to see the codes, pass the dictionary to the print_codes
method:
.. code:: python
api.print_codes(api.NON_STANDARD_REGIONS)
.. parsed-literal::
1A Arab World
1W World
4E East Asia & Pacific (developing only)
7E Europe & Central Asia (developing only)
8S South Asia
A4 Sub-Saharan Africa excluding South Africa
A5 Sub-Saharan Africa excluding South Africa and Nigeria
A9 Africa
C4 East Asia and the Pacific (IFC classification)
C5 Europe and Central Asia (IFC classification)
C6 Latin America and the Caribbean (IFC classification)
C7 Middle East and North Africa (IFC classification)
C8 South Asia (IFC classification)
C9 Sub-Saharan Africa (IFC classification)
EU European Union
JG Channel Islands
KV Kosovo
M2 North Africa
OE OECD members
S1 Small states
S2 Pacific island small states
S3 Caribbean small states
S4 Other small states
XC Euro area
XD High income
XE Heavily indebted poor countries (HIPC)
XJ Latin America & Caribbean (developing only)
XL Least developed countries: UN classification
XM Low income
XN Lower middle income
XO Low & middle income
XP Middle income
XQ Middle East & North Africa (developing only)
XR High income: nonOECD
XS High income: OECD
XT Upper middle income
XU North America
XY Not classified
Z4 East Asia & Pacific (all income levels)
Z7 Europe & Central Asia (all income levels)
ZF Sub-Saharan Africa (developing only)
ZG Sub-Saharan Africa (all income levels)
ZJ Latin America & Caribbean (all income levels)
ZQ Middle East & North Africa (all income levels)
Climate API
There are two methods to the climate API - get_modelled
, which
returns a ModelledDataset
instance, and get_instrumental
, which
returns an InstrumentalDataset
instance. The World Bank API has
multiple date pairs associated with each dataset, but a single wbpy
call will make multiple API calls and return all the dates associated
with the requested data type.
For full explanation of the data and associated models, see the Climate API documentation <http://data.worldbank.org/developers/climate-data-api>
__.
Like the Indicators API, locations can be ISO-1366 alpha-2 or alpha-3
country codes. They can also be IDs corresponding to regional river
basins. A basin map can be found in the official Climate API
documentation. The API includes a KML interface that returns basin
definitions, but this is currently not supported by wbpy
.
Instrumental data
The available arguments and their definitions are accessible via the
ARG_DEFINITIONS
attribute:
.. code:: python
c_api = wbpy.ClimateAPI()
c_api.ARG_DEFINITIONS["instrumental_types"]
.. parsed-literal::
{'pr': 'Precipitation (rainfall and assumed water equivalent), in millimeters',
'tas': 'Temperature, in degrees Celsius'}
.. code:: python
c_api.ARG_DEFINITIONS["instrumental_intervals"]
.. parsed-literal::
['year', 'month', 'decade']
.. code:: python
iso_and_basin_codes = ["AU", 1, 302]
dataset = c_api.get_instrumental(data_type="tas", interval="decade", locations=iso_and_basin_codes)
dataset
.. parsed-literal::
<wbpy.climate.InstrumentalDataset({'tas': 'Temperature, in degrees Celsius'}, 'decade') with id: 140420664386392>
The InstrumentalDataset
instance stores the API responses, various
metadata and methods for accessing the data:
.. code:: python
pprint(dataset.as_dict())
.. parsed-literal::
{'1': {'1960': 5.975941,
'1970': 6.1606956,
'1980': 6.3607564,
'1990': 6.600332,
'2000': 7.3054743},
'302': {'1960': -12.850627,
'1970': -12.679074,
'1980': -12.295782,
'1990': -11.440549,
'2000': -11.460049},
'AU': {'1900': 21.078014,
'1910': 21.296726,
'1920': 21.158426,
'1930': 21.245909,
'1940': 21.04456,
'1950': 21.136906,
'1960': 21.263151,
'1970': 21.306032,
'1980': 21.633171,
'1990': 21.727072,
'2000': 21.741446,
'2010': 21.351604}}
.. code:: python
dataset.data_type
.. parsed-literal::
{'tas': 'Temperature, in degrees Celsius'}
Modelled data
get_modelled
returns data derived from Global Glimate Models. There
are various possible data types:
.. code:: python
c_api.ARG_DEFINITIONS["modelled_types"]
.. parsed-literal::
{'tmin_means': 'Average daily minimum temperature, Celsius',
'tmax_means': 'Average daily maximum temperature, Celsius',
'tmax_days90th': "Number of days with max temperature above the control period's 90th percentile (hot days)",
'tmin_days90th': "Number of days with min temperature above the control period's 90th percentile (warm nights)",
'tmax_days10th': "Number of days with max temperature below the control period's 10th percentile (cool days)",
'tmin_days10th': "Number of days with min temperature below the control period's 10th percentile (cold nights)",
'tmin_days0': 'Number of days with min temperature below 0 degrees Celsius',
'ppt_days': 'Number of days with precipitation > 0.2mm',
'ppt_days2': 'Number of days with precipitation > 2mm',
'ppt_days10': 'Number of days with precipitation > 10mm',
'ppt_days90th': "Number of days with precipitation > the control period's 90th percentile",
'ppt_dryspell': 'Average number of days between precipitation events',
'ppt_means': 'Average daily precipitation',
'pr': 'Precipitation (rainfall and assumed water equivalent), in millimeters',
'tas': 'Temperature, in degrees Celsius'}
.. code:: python
c_api.ARG_DEFINITIONS["modelled_intervals"]
.. parsed-literal::
{'mavg': 'Monthly average',
'annualavg': 'Annual average',
'manom': 'Average monthly change (anomaly).',
'annualanom': 'Average annual change (anomaly).',
'aanom': 'Average annual change (anomaly).',
'aavg': 'Annual average'}
.. code:: python
locations = ["US"]
modelled_dataset = c_api.get_modelled("pr", "aavg", locations)
modelled_dataset
.. parsed-literal::
<wbpy.climate.ModelledDataset({'pr': 'Precipitation (rainfall and assumed water equivalent), in millimeters'}, {'annualavg': 'Annual average'}) with id: 140420644546936>
The as_dict()
method for ModelledDataset
takes a kwarg to
specify the SRES used for future values. The API uses the A2 and B1
scenarios:
.. code:: python
pprint(modelled_dataset.as_dict(sres="a2"))
.. parsed-literal::
{'bccr_bcm2_0': {'US': {'1939': 790.6361028238144,
'1959': 780.0266445283039,
'1979': 782.7526463724754,
'1999': 785.2701232986692,
'2039': 783.1710625360416,
'2059': 804.3092939039038,
'2079': 804.6334514665734,
'2099': 859.8239942059615}},
'cccma_cgcm3_1': {'US': {'1939': 739.3362184367556,
'1959': 746.2975320411192,
'1979': 739.4449188917432,
'1999': 777.7889471267924,
'2039': 808.1474524518724,
'2059': 817.1428223416907,
'2079': 841.7569757399672,
'2099': 871.6962130920673}},
'cnrm_cm3': {'US': {'1939': 939.7243516499025,
'1959': 925.6653938577782,
'1979': 940.2236730711822,
'1999': 947.5967851291585,
'2039': 962.6036875622598,
'2059': 964.4556538112397,
'2079': 970.7166949721155,
'2099': 987.7517843651068}},
'csiro_mk3_5': {'US': {'1939': 779.0404023054358,
'1959': 799.5361627973773,
'1979': 796.607564873811,
'1999': 798.381580457504,
'2039': 843.0498166357976,
'2059': 867.6557574566958,
'2079': 884.6635096827529,
'2099': 914.4892749739001}},
'ensemble_10': {'US': {'1939': 666.6475434339079,
'1959': 665.7610790034265,
'1979': 667.1738791525539,
'1999': 670.415327533486,
'2039': 686.4924376146926,
'2059': 690.3005736391768,
'2079': 693.0003564697117,
'2099': 709.0425715268083}},
'ensemble_50': {'US': {'1939': 850.8566502216561,
'1959': 851.1821259381916,
'1979': 852.9435213996902,
'1999': 855.0129391106861,
'2039': 873.0523341457085,
'2059': 880.9922361302446,
'2079': 892.9013887250998,
'2099': 916.5180306375303}},
'ensemble_90': {'US': {'1939': 1020.5076048129349,
'1959': 1018.0491512612145,
'1979': 1020.2880850240846,
'1999': 1029.4064082957505,
'2039': 1048.7391596386938,
'2059': 1056.5504828474266,
'2079': 1067.6845781511777,
'2099': 1106.7227445303276}},
'gfdl_cm2_0': {'US': {'1939': 898.1444407247458,
'1959': 890.578762482606,
'1979': 873.31199204601,
'1999': 890.4286021472773,
'2039': 884.667792836329,
'2059': 891.2301658572712,
'2079': 858.2037683045394,
'2099': 862.2664763719782}},
'gfdl_cm2_1': {'US': {'1939': 847.0485774775588,
'1959': 832.6677468315708,
'1979': 840.3616008806812,
'1999': 827.3124179982142,
'2039': 854.7964182636986,
'2059': 870.5118615966802,
'2079': 868.5767216101426,
'2099': 878.4820392256858}},
'ingv_echam4': {'US': {'1939': 845.4780955327558,
'1959': 845.2359494710544,
'1979': 852.7707911085288,
'1999': 851.9327652092476,
'2039': 866.0409073675132,
'2059': 872.7481665480419,
'2079': 900.9028488881945,
'2099': 919.2062848249728}},
'inmcm3_0': {'US': {'1939': 825.6505057699028,
'1959': 844.9800055068362,
'1979': 860.5045147370352,
'1999': 843.0909232427455,
'2039': 877.4836079129254,
'2059': 885.5902710722888,
'2079': 878.6926405756873,
'2099': 895.3363280260298}},
'ipsl_cm4': {'US': {'1939': 897.1020362453344,
'1959': 881.2890852171191,
'1979': 888.57049309408,
'1999': 900.6203651333254,
'2039': 911.0684866203087,
'2059': 908.9880107774133,
'2079': 901.9352518210636,
'2099': 924.6232749957305}},
'miroc3_2_medres': {'US': {'1939': 815.9899280956733,
'1959': 820.924517871823,
'1979': 820.561522790526,
'1999': 819.1997264378206,
'2039': 815.5123964532938,
'2059': 812.3150259004544,
'2079': 810.515112232343,
'2099': 817.447065795786}},
'miub_echo_g': {'US': {'1939': 815.7217424350092,
'1959': 819.1216945126766,
'1979': 816.4814506968534,
'1999': 836.9998036334464,
'2039': 841.4617194083404,
'2059': 847.7322521257802,
'2079': 880.5316551949228,
'2099': 920.7048218268357}},
'mpi_echam5': {'US': {'1939': 932.4105818597735,
'1959': 930.0013750415483,
'1979': 921.4702739003415,
'1999': 941.6353488835641,
'2039': 969.6867904854836,
'2059': 990.3857663124111,
'2079': 1000.6110341746332,
'2099': 1080.5289311209049}},
'mri_cgcm2_3_2a': {'US': {'1939': 728.5749928767182,
'1959': 720.3172590678807,
'1979': 732.943309679262,
'1999': 727.9981579483319,
'2039': 735.1725461582992,
'2059': 751.6773914898702,
'2079': 776.7754868580876,
'2099': 798.3133892715804}},
'ukmo_hadcm3': {'US': {'1939': 839.9996105395489,
'1959': 849.9134671410114,
'1979': 851.505705112856,
'1999': 848.5821514937204,
'2039': 874.371671909573,
'2059': 877.512058895459,
'2079': 881.875457040721,
'2099': 927.3730832143624}},
'ukmo_hadgem1': {'US': {'1939': 841.7922922262945,
'1959': 845.698748695459,
'1979': 834.3090961483945,
'1999': 831.8516144217097,
'2039': 866.4876927782285,
'2059': 864.5861500956854,
'2079': 882.1356350906877,
'2099': 907.0139017841842}}}
Again, various metadata is available, for example:
.. code:: python
modelled_dataset.gcms
.. parsed-literal::
{'bccr_bcm2_0': 'BCM 2.0',
'cccma_cgcm3_1': 'CGCM 3.1 (T47)',
'cnrm_cm3': 'CNRM CM3',
'csiro_mk3_5': 'CSIRO Mark 3.5',
'gfdl_cm2_0': 'GFDL CM2.0',
'gfdl_cm2_1': 'GFDL CM2.1',
'ingv_echam4': 'ECHAM 4.6',
'inmcm3_0': 'INMCM3.0',
'ipsl_cm4': 'IPSL-CM4',
'miub_echo_g': 'ECHO-G',
'mpi_echam5': 'ECHAM5/MPI-OM',
'mri_cgcm2_3_2a': 'MRI-CGCM2.3.2',
'ukmo_hadcm3': 'UKMO HadCM3',
'ukmo_hadgem1': 'UKMO HadGEM1',
'ensemble_90': '90th percentile values of all models together',
'ensemble_10': '10th percentile values of all models together',
'ensemble_50': '50th percentile values of all models together'}
.. code:: python
modelled_dataset.dates()
.. parsed-literal::
[('1920', '1939'),
('1940', '1959'),
('1960', '1979'),
('1980', '1999'),
('2020', '2039'),
('2040', '2059'),
('2060', '2079'),
('2080', '2099')]
Cache
The default cache function uses system temporary files. You can specify
your own. The function has to take a url, and return the corresponding
web page as a string.
.. code:: python
def func(url):
# Basic function that doesn't do any caching
from six.moves.urllib import request
return request.urlopen(url).read()
# Either pass it in on instantiation...
ind_api = wbpy.IndicatorAPI(fetch=func)
# ...or point api.fetch to it.
climate_api = wbpy.ClimateAPI()
climate_api.fetch = func