Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

xverse

Package Overview
Dependencies
Maintainers
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

xverse

xverse short for X uniVerse is collection of transformers for feature engineering and feature selection

  • 1.0.5
  • PyPI
  • Socket score

Maintainers
1

xverse

xverse short for X uniVerse is a Python module for machine learning in the space of feature engineering, feature transformation and feature selection.

Currently, xverse package handles only binary target.

Installation

The package requires numpy, pandas, scikit-learn, scipy and statsmodels. In addition, the package is tested on Python version 3.5 and above.

To install the package, download this folder and execute:

python setup.py install

or

pip install xverse

To install the development version. you can use

pip install --upgrade git+https://github.com/Sundar0989/XuniVerse

Usage

XVerse module is fully compatible with sklearn transformers, so they can be used in pipelines or in your existing scripts. Currently, it supports only Pandas dataframes.

Example

Monotonic Binning (Feature transformation)

from xverse.transformer import MonotonicBinning

clf = MonotonicBinning()
clf.fit(X, y)

print(clf.bins)
{'age': array([19., 35., 45., 87.]),
 'balance': array([-3313.        ,   174.        ,   979.33333333, 71188.        ]),
 'campaign': array([ 1.,  3., 50.]),
 'day': array([ 1., 12., 20., 31.]),
 'duration': array([   4.        ,  128.        ,  261.33333333, 3025.        ]),
 'pdays': array([-1.00e+00, -5.00e-01,  1.00e+00,  8.71e+02]),
 'previous': array([ 0.,  1., 25.])}

Weight of Evidence (WOE) and Information Value (IV) (Feature transformation and Selection)

from xverse.transformer import WOE

clf = WOE()
clf.fit(X, y)

print(clf.woe_df.head()) #Weight of Evidence transformation dataset
+---+---------------+--------------------+-------+-------+-----------+---------------------+--------------------+---------------------+------------------------+----------------------+---------------------+
|   | Variable_Name | Category           | Count | Event | Non_Event | Event_Rate          | Non_Event_Rate     | Event_Distribution  | Non_Event_Distribution | WOE                  | Information_Value   |
+---+---------------+--------------------+-------+-------+-----------+---------------------+--------------------+---------------------+------------------------+----------------------+---------------------+
| 0 | age           | (18.999, 35.0]     | 1652  | 197   | 1455      | 0.11924939467312348 | 0.8807506053268765 | 0.3781190019193858  | 0.36375                | 0.038742147481056366 | 0.02469286279236605 |
+---+---------------+--------------------+-------+-------+-----------+---------------------+--------------------+---------------------+------------------------+----------------------+---------------------+
| 1 | age           | (35.0, 45.0]       | 1388  | 129   | 1259      | 0.09293948126801153 | 0.9070605187319885 | 0.2476007677543186  | 0.31475                | -0.2399610313340142  | 0.02469286279236605 |
+---+---------------+--------------------+-------+-------+-----------+---------------------+--------------------+---------------------+------------------------+----------------------+---------------------+
| 2 | age           | (45.0, 87.0]       | 1481  | 195   | 1286      | 0.13166779203241052 | 0.8683322079675895 | 0.3742802303262956  | 0.3215                 | 0.15200725211484276  | 0.02469286279236605 |
+---+---------------+--------------------+-------+-------+-----------+---------------------+--------------------+---------------------+------------------------+----------------------+---------------------+
| 3 | balance       | (-3313.001, 174.0] | 1512  | 133   | 1379      | 0.08796296296296297 | 0.9120370370370371 | 0.255278310940499   | 0.34475                | -0.3004651512228873  | 0.06157421302850976 |
+---+---------------+--------------------+-------+-------+-----------+---------------------+--------------------+---------------------+------------------------+----------------------+---------------------+
| 4 | balance       | (174.0, 979.333]   | 1502  | 163   | 1339      | 0.1085219707057257  | 0.8914780292942743 | 0.31285988483685223 | 0.33475                | -0.06762854653574929 | 0.06157421302850976 |
+---+---------------+--------------------+-------+-------+-----------+---------------------+--------------------+---------------------+------------------------+----------------------+---------------------+
print(clf.iv_df) #Information value dataset
+----+---------------+------------------------+
|    | Variable_Name | Information_Value      |
+----+---------------+------------------------+
| 6  | duration      | 1.1606798895024775     |
+----+---------------+------------------------+
| 14 | poutcome      | 0.4618899274360784     |
+----+---------------+------------------------+
| 12 | month         | 0.37953277364723703    |
+----+---------------+------------------------+
| 3  | contact       | 0.2477624664660033     |
+----+---------------+------------------------+
| 13 | pdays         | 0.20326698063078097    |
+----+---------------+------------------------+
| 15 | previous      | 0.1770811514357682     |
+----+---------------+------------------------+
| 9  | job           | 0.13251854742728092    |
+----+---------------+------------------------+
| 8  | housing       | 0.10655553101753026    |
+----+---------------+------------------------+
| 1  | balance       | 0.06157421302850976    |
+----+---------------+------------------------+
| 10 | loan          | 0.06079091829519839    |
+----+---------------+------------------------+
| 11 | marital       | 0.04009032555607127    |
+----+---------------+------------------------+
| 7  | education     | 0.03181211694236827    |
+----+---------------+------------------------+
| 0  | age           | 0.02469286279236605    |
+----+---------------+------------------------+
| 2  | campaign      | 0.019350877455830695   |
+----+---------------+------------------------+
| 4  | day           | 0.0028156288525541884  |
+----+---------------+------------------------+
| 5  | default       | 1.6450124824351054e-05 |
+----+---------------+------------------------+
Apply this handy rule to select variables based on Information value
+-------------------+-----------------------------+
| Information Value | Variable Predictiveness     |
+-------------------+-----------------------------+
| Less than 0.02    | Not useful for prediction   |
+-------------------+-----------------------------+
| 0.02 to 0.1       | Weak predictive Power       |
+-------------------+-----------------------------+
| 0.1 to 0.3        | Medium predictive Power     |
+-------------------+-----------------------------+
| 0.3 to 0.5        | Strong predictive Power     |
+-------------------+-----------------------------+
| >0.5              | Suspicious Predictive Power |
+-------------------+-----------------------------+
clf.transform(X) #apply WOE transformation on the dataset

VotingSelector (Feature selection)

from xverse.ensemble import VotingSelector

clf = VotingSelector()
clf.fit(X, y)
print(clf.available_techniques)
['WOE', 'RF', 'RFE', 'ETC', 'CS', 'L_ONE']
clf.feature_importances_
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
|    | Variable_Name | Information_Value      | Random_Forest         | Recursive_Feature_Elimination | Extra_Trees          | Chi_Square           | L_One                   |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 0  | duration      | 1.1606798895024775     | 0.29100016518065835   | 0.0                           | 0.24336032789230097  | 62.53045588382914    | 0.0009834060765907017   |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 1  | poutcome      | 0.4618899274360784     | 0.05975563617541324   | 0.8149539108454378            | 0.07291945099022576  | 209.1788690088815    | 0.27884071686005385     |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 2  | month         | 0.37953277364723703    | 0.09472524644853274   | 0.6270707318033509            | 0.10303345973615481  | 54.81011477300214    | 0.18763733424335785     |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 3  | contact       | 0.2477624664660033     | 0.018358265986906014  | 0.45594899004325673           | 0.029325952072445132 | 25.357947712611868   | 0.04876094100065351     |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 4  | pdays         | 0.20326698063078097    | 0.04927368012222067   | 0.0                           | 0.02738001362078519  | 13.808925800391403   | -0.00026932622581396677 |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 5  | previous      | 0.1770811514357682     | 0.02612886929056733   | 0.0                           | 0.027197295919351088 | 13.019278420681164   | 0.0                     |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 6  | job           | 0.13251854742728092    | 0.050024353325485646  | 0.5207956132479409            | 0.05775450997836301  | 13.043319831003855   | 0.11279310830899944     |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 7  | housing       | 0.10655553101753026    | 0.021126744587568032  | 0.28135643347861894           | 0.020830177741565564 | 28.043094016887064   | 0.0                     |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 8  | balance       | 0.06157421302850976    | 0.0963543249575152    | 0.0                           | 0.08429423739161768  | 0.03720300378031974  | -1.3553979494412002e-06 |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 9  | loan          | 0.06079091829519839    | 0.008783347837152861  | 0.6414812505459246            | 0.013652849211750306 | 3.4361027026756084   | 0.0                     |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 10 | marital       | 0.04009032555607127    | 0.02648832289940045   | 0.9140684291962617            | 0.03929791951230852  | 10.889749514307464   | 0.0                     |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 11 | education     | 0.03181211694236827    | 0.02757205345952717   | 0.21529148795958114           | 0.03980467391633981  | 4.70588768051867     | 0.0                     |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 12 | age           | 0.02469286279236605    | 0.10164634631051869   | 0.0                           | 0.08893247762137796  | 0.6818947945319156   | -0.004414426121909251   |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 13 | campaign      | 0.019350877455830695   | 0.04289312347011537   | 0.0                           | 0.05716486374991612  | 1.8596566731099653   | -0.012650844735972498   |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 14 | day           | 0.0028156288525541884  | 0.083859807784465     | 0.0                           | 0.09056623672332145  | 0.08687716739873641  | -0.00231307077371602    |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
| 15 | default       | 1.6450124824351054e-05 | 0.0020097121639531665 | 0.0                           | 0.004485553922176626 | 0.007542737902818529 | 0.0                     |
+----+---------------+------------------------+-----------------------+-------------------------------+----------------------+----------------------+-------------------------+
clf.feature_votes_
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
|    | Variable_Name | Information_Value | Random_Forest | Recursive_Feature_Elimination | Extra_Trees | Chi_Square | L_One | Votes |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 1  | poutcome      | 1                 | 1             | 1                             | 1           | 1          | 1     | 6     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 2  | month         | 1                 | 1             | 1                             | 1           | 1          | 1     | 6     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 6  | job           | 1                 | 1             | 1                             | 1           | 1          | 1     | 6     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 0  | duration      | 1                 | 1             | 0                             | 1           | 1          | 1     | 5     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 3  | contact       | 1                 | 0             | 1                             | 0           | 1          | 1     | 4     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 4  | pdays         | 1                 | 1             | 0                             | 0           | 1          | 0     | 3     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 7  | housing       | 1                 | 0             | 1                             | 0           | 1          | 0     | 3     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 12 | age           | 0                 | 1             | 0                             | 1           | 0          | 1     | 3     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 14 | day           | 0                 | 1             | 0                             | 1           | 0          | 1     | 3     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 5  | previous      | 1                 | 0             | 0                             | 0           | 1          | 0     | 2     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 8  | balance       | 0                 | 1             | 0                             | 1           | 0          | 0     | 2     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 13 | campaign      | 0                 | 0             | 0                             | 1           | 0          | 1     | 2     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 9  | loan          | 0                 | 0             | 1                             | 0           | 0          | 0     | 1     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 10 | marital       | 0                 | 0             | 1                             | 0           | 0          | 0     | 1     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 11 | education     | 0                 | 0             | 1                             | 0           | 0          | 0     | 1     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+
| 15 | default       | 0                 | 0             | 0                             | 0           | 0          | 0     | 0     |
+----+---------------+-------------------+---------------+-------------------------------+-------------+------------+-------+-------+

Contributing

XuniVerse is under active development, if you'd like to be involved, we'd love to have you. Check out the CONTRIBUTING.md file or open an issue on the github project to get started.

References

https://www.listendata.com/2015/03/weight-of-evidence-woe-and-information.html

https://medium.com/@sundarstyles89/variable-selection-using-python-vote-based-approach-faa42da960f0

Contributors

Alessio Tamburro (https://github.com/alessiot)

FAQs


Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc