Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
zEpid is an epidemiology analysis package, providing easy to use tools for epidemiologists coding in Python 3.5+. The purpose of this library is to provide a toolset to make epidemiology e-z. A variety of calculations and plots can be generated through various functions. For a sample walkthrough of what this library is capable of, please look at the tutorials available at https://github.com/pzivich/Python-for-Epidemiologists
A few highlights: basic epidemiology calculations, easily create functional form assessment plots, easily create effect measure plots, and causal inference tools. Implemented estimators include; inverse probability of treatment weights, inverse probability of censoring weights, inverse probabilitiy of missing weights, augmented inverse probability of treatment weights, time-fixed g-formula, Monte Carlo g-formula, Iterative conditional g-formula, and targeted maximum likelihood (TMLE). Additionally, generalizability/transportability tools are available including; inverse probability of sampling weights, g-transport formula, and doubly robust generalizability/transportability formulas.
If you have any requests for items to be included, please contact me and I will work on adding any requested features. You can contact me either through GitHub (https://github.com/pzivich), email (gmail: zepidpy), or twitter (@zepidpy).
You can install zEpid using pip install zepid
pandas >= 0.18.0, numpy, statsmodels >= 0.7.0, matplotlib >= 2.0, scipy, tabulate
Calculate measures directly from a pandas dataframe object. Implemented measures include; risk ratio, risk difference, odds ratio, incidence rate ratio, incidence rate difference, number needed to treat, sensitivity, specificity, population attributable fraction, attributable community risk
Measures can be directly calculated from a pandas DataFrame object or using summary data.
Other handy features include; splines, Table 1 generator, interaction contrast, interaction contrast ratio, positive predictive value, negative predictive value, screening cost analyzer, counternull p-values, convert odds to proportions, convert proportions to odds
For guided tutorials with Jupyter Notebooks: https://github.com/pzivich/Python-for-Epidemiologists/blob/master/3_Epidemiology_Analysis/a_basics/1_basic_measures.ipynb
Uses matplotlib in the background to generate some useful plots. Implemented plots include; functional form assessment (with statsmodels output), p-value function plots, spaghetti plot, effect measure plot (forest plot), receiver-operator curve, dynamic risk plots, and L'Abbe plots
For examples see: http://zepid.readthedocs.io/en/latest/Graphics.html
The causal branch includes various estimators for causal inference with observational data. Details on currently implemented estimators are below:
Current implementation includes; time-fixed exposure g-formula, Monte Carlo g-formula, and iterative conditional g-formula
Current implementation includes; IP Treatment W, IP Censoring W, IP Missing W. Diagnostics are also available for IPTW. IPMW supports monotone missing data
Current implementation includes the augmented-IPTW estimator described by Funk et al 2011 AJE
TMLE can be estimated through standard logistic regression model, or through user-input functions. Alternatively, users
can input machine learning algorithms to estimate probabilities. Supported machine learning algorithms include sklearn
For generalizing results or transporting to a different target population, several estimators are available. These include inverse probability of sampling weights, g-transport formula, and doubly robust formulas
Tutorials for the usage of these estimators are available at: https://github.com/pzivich/Python-for-Epidemiologists/tree/master/3_Epidemiology_Analysis/c_causal_inference
Single time-point g-estimation of structural nested mean models are supported.
Includes trapezoidal distribution generator, corrected Risk Ratio
Tutorials are available at: https://github.com/pzivich/Python-for-Epidemiologists/tree/master/3_Epidemiology_Analysis/d_sensitivity_analyses
FAQs
Tool package for epidemiologic analyses
We found that zepid demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.