Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
*** IMPORTANT LEGAL DISCLAIMER ***Yahoo!, Y!Finance, and Yahoo! finance are registered trademarks of Yahoo, Inc. yf_as_dataframe is not affiliated, endorsed, or vetted by Yahoo, Inc. It is an open-source tool that uses Yahoo's publicly available APIs, and is intended for research and educational purposes. You should refer to Yahoo!'s terms of use (here, here, and here) for details on your rights to use the actual data downloaded. Remember - the Yahoo! finance API is intended for personal use only. |
This package provides for pulling data from Yahoo!'s unofficial API, and providing that data using using Polars dataframes in ruby. Data in those dataframes can then be easily post-processed using technical indicators provided by Tulip via Tulirb's ruby bindings, and visualized using Vega.
The Ticker
class, which allows you to access ticker data from Yahoo!'s unofficial API:
msft = YfAsDataframe::Ticker.new("MSFT")
# get all stock info
msft.info
# get historical market data as a dataframe
hist = msft.history(period: "1mo")
hist2 = msft.history(start: '2020-01-01', fin: '2021-12-31')
# show meta information about the history (requires history() to be called first)
msft.history_metadata
# show actions (dividends, splits, capital gains)
msft.actions
msft.dividends
msft.splits
msft.capital_gains # only for mutual funds & etfs
# show share count
msft.shares_full(start: "2022-01-01", fin: nil)
# show financials:
# - income statement
msft.income_stmt
msft.quarterly_income_stmt
# - balance sheet
msft.balance_sheet
msft.quarterly_balance_sheet
# - cash flow statement
msft.cashflow
msft.quarterly_cashflow
# show holders
msft.major_holders
msft.institutional_holders
msft.mutualfund_holders
msft.insider_transactions
msft.insider_purchases
msft.insider_roster_holders
# show recommendations
msft.recommendations
msft.recommendations_summary
msft.upgrades_downgrades
# Show future and historic earnings dates, returns at most next 4 quarters and last 8 quarters by default.
msft.earnings_dates
# show ISIN code
# ISIN = International Securities Identification Number
msft.isin
# show options expirations
msft.options
# show news
msft.news
# get option chain for specific expiration
opt = msft.option_chain('2026-12-18')
# data available via: opt.calls, opt.puts
# technical operations, using the Tulirb gem, which provides bindings to
# the Tulip technical indicators library
h = msft.history(period: '2y', interval: '1d')
YfAsDataframe.ad(h)
# then
h.insert_at_idx(h.columns.length, YfAsDataframe.ad(h))
h['ad_results'] = YfAsDataframe.ad(h)
Most of the indicators are found here and here. Indicator parameters in Tulirb called, e.g., "period" or "short_period" are renamed as "window" or "short_window", respectively. There are a few other variants that are affected. Default values are shown below.
df = msft.history(period: '3y', interval: '1d') # for example
YfAsDataframe.ad(df)
YfAsDataframe.adosc(df, short_window: 2, long_window: 5)
YfAsDataframe.adx(df, column: 'Adj Close', window: 5)
YfAsDataframe.adxr(df, column: 'Adj Close', window: 5)
YfAsDataframe.avg_daily_trading_volume(df, window: 20)
YfAsDataframe.ao(df)
YfAsDataframe.apo(df, column: 'Adj Close', short_window: 12, long_window: 29)
YfAsDataframe.aroon(df, window: 20)
YfAsDataframe.aroonosc(df, window: 20)
YfAsDataframe.avg_price(df)
YfAsDataframe.atr(df, window: 20)
YfAsDataframe.bbands(df, column: 'Adj Close', window: 20, stddev: 1 )
YfAsDataframe.bop(df)
YfAsDataframe.cci(df, window: 20)
YfAsDataframe.cmo(df, column: 'Adj Close', window: 20)
YfAsDataframe.cvi(df, window: 20)
YfAsDataframe.dema(df, column: 'Adj Close', window: 20)
YfAsDataframe.di(df, window: 20)
YfAsDataframe.dm(df, window: 20)
YfAsDataframe.dpo(df, column: 'Adj Close', window: 20)
YfAsDataframe.dx(df, window: 20)
YfAsDataframe.ema(df, column: 'Adj Close', window: 5)
YfAsDataframe.emv(df)
YfAsDataframe.fisher(df, window: 20)
YfAsDataframe.fosc(df, window: 20)
YfAsDataframe.hma(df, column: 'Adj Close', window: 5)
YfAsDataframe.kama(df, column: 'Adj Close', window: 5)
YfAsDataframe.kvo(df, short_window: 5, long_window: 20)
YfAsDataframe.linreg(df, column: 'Adj Close', window: 20)
YfAsDataframe.linregintercept(df, column: 'Adj Close', window: 20)
YfAsDataframe.linregslope(df, column: 'Adj Close', window: 20)
YfAsDataframe.macd(df, column: 'Adj Close', short_window: 12, long_window: 26, signal_window: 9)
YfAsDataframe.marketfi(df)
YfAsDataframe.mass(df, window: 20)
YfAsDataframe.max(df, column: 'Adj Close', window: 20)
YfAsDataframe.md(df, column: 'Adj Close', window: 20)
YfAsDataframe.median_price(df)
YfAsDataframe.mfi(df, window: 20)
YfAsDataframe.min(df, column: 'Adj Close', window: 20)
YfAsDataframe.mom(df, column: 'Adj Close', window: 5)
YfAsDataframe.moving_avgs(df, window: 20)
YfAsDataframe.natr(df, window: 20)
YfAsDataframe.nvi(df)
YfAsDataframe.obv(df)
YfAsDataframe.ppo(df, column: 'Adj Close', short_window: 12, long_window: 26)
YfAsDataframe.psar(df, acceleration_factor_step: 0.2, acceleration_factor_maximum: 2)
YfAsDataframe.pvi(df)
YfAsDataframe.qstick(df, window: 20)
YfAsDataframe.roc(df, column: 'Adj Close', window: 20)
YfAsDataframe.rocr(df, column: 'Adj Close', window: 20)
YfAsDataframe.rsi(df, window: 20)
YfAsDataframe.sma(df, column: 'Adj Close', window: 20)
YfAsDataframe.stddev(df, column: 'Adj Close', window: 20)
YfAsDataframe.stderr(df, column: 'Adj Close', window: 20)
YfAsDataframe.stochrsi(df, column: 'Adj Close', window: 20)
YfAsDataframe.sum(df, column: 'Adj Close', window: 20)
YfAsDataframe.tema(df, column: 'Adj Close', window: 20)
YfAsDataframe.tr(df, column: 'Adj Close')
YfAsDataframe.trima(df, column: 'Adj Close', window: 20)
YfAsDataframe.trix(df, column: 'Adj Close', window: 20)
YfAsDataframe.trima(df, column: 'Adj Close', window: 20)
YfAsDataframe.tsf(df, column: 'Adj Close', window: 20)
YfAsDataframe.typical_price(df)
YfAsDataframe.ultosc(df, short_window: 5, medium_window: 12, long_window: 26)
YfAsDataframe.weighted_close_price(df)
YfAsDataframe.var(df, column: 'Adj Close', window: 20)
YfAsDataframe.vhf(df, column: 'Adj Close', window: 20)
YfAsDataframe.vidya(df, column: 'Adj Close', short_window: 5, long_window: 20, alpha: 0.2)
YfAsDataframe.volatility(df, column: 'Adj Close', window: 20)
YfAsDataframe.vosc(df, column: 'Adj Close', short_window: 5, long_window: 20)
YfAsDataframe.vol_weighted_moving_avg(df, window: 20)
YfAsDataframe.wad(df)
YfAsDataframe.wcprice(df)
YfAsDataframe.wilders(df, column: 'Adj Close', window: 20)
YfAsDataframe.willr(df, window: 20)
YfAsDataframe.wma(df, column: 'Adj Close', window: 5)
YfAsDataframe.zlema(df, column: 'Adj Close', window: 5)
To graph any of the series using Vega, per the information here, you will need to run
yarn add vega-cli vega-lite
Then, from within irb, you can generate charts, e.g.,
> msft = YfAsDataframe::Ticker.new("MSFT")
# =>
# #<YfAsDataframe::Ticker:0x000000011e6d50a0
# ...
> df = msft.history(period: '3y', interval: '1d')
# =>
# shape: (754, 10)
# ...
> df.insert_at_idx(df.columns.length, YfAsDataframe.ema(df, column: 'Adj Close', window: 5))
# =>
# shape: (753, 11)
# ┌────────────┬────────────┬────────────┬────────────┬───┬───────────┬───────────────┬──────────────┬──────────────────────┐
# │ Timestamps ┆ Open ┆ High ┆ Low ┆ … ┆ Dividends ┆ Capital Gains ┆ Stock Splits ┆ EMA(5) for Adj Close │
# │ --- ┆ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- ┆ --- │
# │ date ┆ f64 ┆ f64 ┆ f64 ┆ ┆ f64 ┆ f64 ┆ f64 ┆ f64 │
# ╞════════════╪════════════╪════════════╪════════════╪═══╪═══════════╪═══════════════╪══════════════╪══════════════════════╡
# │ 2021-07-12 ┆ 279.160004 ┆ 279.769989 ┆ 276.579987 ┆ … ┆ 0.0 ┆ 0.0 ┆ 0.0 ┆ 270.325745 │
# │ 2021-07-13 ┆ 277.519989 ┆ 282.850006 ┆ 277.390015 ┆ … ┆ 0.0 ┆ 0.0 ┆ 0.0 ┆ 271.514984 │
# │ 2021-07-14 ┆ 282.350006 ┆ 283.660004 ┆ 280.549988 ┆ … ┆ 0.0 ┆ 0.0 ┆ 0.0 ┆ 272.804932 │
# │ 2021-07-15 ┆ 282.0 ┆ 282.51001 ┆ 279.829987 ┆ … ┆ 0.0 ┆ 0.0 ┆ 0.0 ┆ 273.184001 │
# │ 2021-07-16 ┆ 282.070007 ┆ 284.100006 ┆ 279.459991 ┆ … ┆ 0.0 ┆ 0.0 ┆ 0.0 ┆ 273.345751 │
# │ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … ┆ … │
# │ 2024-07-02 ┆ 453.200012 ┆ 459.589996 ┆ 453.109985 ┆ … ┆ 0.0 ┆ 0.0 ┆ 0.0 ┆ 454.288375 │
# │ 2024-07-03 ┆ 458.190002 ┆ 461.019989 ┆ 457.880005 ┆ … ┆ 0.0 ┆ 0.0 ┆ 0.0 ┆ 456.448913 │
# │ 2024-07-05 ┆ 459.609985 ┆ 468.350006 ┆ 458.970001 ┆ … ┆ 0.0 ┆ 0.0 ┆ 0.0 ┆ 460.152608 │
# │ 2024-07-08 ┆ 466.549988 ┆ 467.700012 ┆ 464.459991 ┆ … ┆ 0.0 ┆ 0.0 ┆ 0.0 ┆ 462.181735 │
# │ 2024-07-09 ┆ 467.0 ┆ 467.329987 ┆ 458.0 ┆ … ┆ 0.0 ┆ 0.0 ┆ 0.0 ┆ 461.30116 │
# └────────────┴────────────┴────────────┴────────────┴───┴───────────┴───────────────┴──────────────┴──────────────────────┘
> File.binwrite('/tmp/chart.png',df.plot("Timestamps", "EMA(5) for Adj Close", type: "line", width:800, height:500).to_png)
# => 44913
Then the following image should be saved at the specified location.
PNG, SVG, and PDF output formats are supported directly. See this page for more information in constructing supported charts.
While it has not been tested yet, images should be able to be produced interactively using iruby operating in a Jupyter environment.
Add this line to your application's Gemfile:
gem 'yf_as_dataframe'
And then execute:
$ bundle install
Or install it yourself as:
$ gem install yf_as_dataframe
To install this gem onto your local machine, run bundle exec rake install
. To release a new version, update the version number in version.rb
, and then run bundle exec rake release
, which will create a git tag for the version, push git commits and the created tag, and push the .gem
file to rubygems.org.
Bug reports and pull requests are welcome on GitHub at https://github.com/bmck/yf_as_dataframe.
The yf_as_dataframe gem is available as open source under the MIT Software License (https://opensource.org/licenses/MIT). See the LICENSE.txt file in the release for details.
AGAIN - yf_as_dataframe is not affiliated, endorsed, or vetted by Yahoo, Inc. It's an open-source tool that uses Yahoo's publicly available APIs, and is intended for research and educational purposes. You should refer to Yahoo!'s terms of use (here, here, and here) for details on your rights to use the actual data downloaded.
FAQs
Unknown package
We found that yf_as_dataframe demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.