Package anser provides a document transformation and processing tool to support data migrations. The anser.Application is the primary interface in which migrations are defined and executed. Applications are constructed with a list of MigrationGenerators, and relevant operations. Then the Setup method configures the application, with an anser.Environment, which sets up and collects dependency information. Finally, the Run method executes the migrations in two phases: first by generating migration jobs, and finally by running all migration jobs. The ordering of migrations is derived from the dependency information between generators and the jobs that they generate. When possible jobs are executed in parallel, but the execution of migration operations is a property of the queue object configured in the anser.Environment. The anser package provides a custom amboy/dependency.Manager object, which allows migrations to express dependencies to other migrations. The State() method ensures that all migration IDs specified as edges are satisfied before reporting as "ready" for work. Anser provides the Environment interface, with a global instance accessible via the exported GetEnvironment() function to provide access to runtime configuration state: database connections; amboy.Queue objects, and registries for task implementations. The Environment is an interface: you can build a mock, or use one provided for testing purposes by anser (coming soon). Generators create migration operations and are the first step in an anser Migration. They are supersets of amboy.Job interfaces. The current limitation is that the generated jobs must be stored within the implementation of the generator job, which means they must either all fit in memory *or* be serializable independently (e.g. fit in the 16mb document limit if using a MongoDB backed queue.)
Package nrmongo instruments https://github.com/mongodb/mongo-go-driver Use this package to instrument your MongoDB calls without having to manually create DatastoreSegments. To do so, first set the monitor in the connect options using `SetMonitor` (https://godoc.org/go.mongodb.org/mongo-driver/mongo/options#ClientOptions.SetMonitor): Note that it is important that this `nrmongo` monitor is the last monitor set, otherwise it will be overwritten. If needing to use more than one `event.CommandMonitor`, pass the original monitor to the `nrmongo.NewCommandMonitor` function: Then add the current transaction to the context used in any MongoDB call:
Package mgo offers a rich MongoDB driver for Go. ######################################################### THIS DRIVER IS UNMAINTAINED! See here for details: https://github.com/go-mgo/mgo/blob/v2-unstable/README.md ######################################################### Usage of the driver revolves around the concept of sessions. To get started, obtain a session using the Dial function: This will establish one or more connections with the cluster of servers defined by the url parameter. From then on, the cluster may be queried with multiple consistency rules (see SetMode) and documents retrieved with statements such as: New sessions are typically created by calling session.Copy on the initial session obtained at dial time. These new sessions will share the same cluster information and connection pool, and may be easily handed into other methods and functions for organizing logic. Every session created must have its Close method called at the end of its life time, so its resources may be put back in the pool or collected, depending on the case. For more details, see the documentation for the types and methods.
Package test validates the otelmongo instrumentation with the default SDK. This package is in a separate module from the instrumentation it tests to isolate the dependency of the default SDK and not impose this as a transitive dependency for users.
Package bson is an implementation of the BSON specification for Go: It was created as part of the mgo MongoDB driver for Go, but is standalone and may be used on its own without the driver.
Package restlayer is an API framework heavily inspired by the excellent Python Eve (http://python-eve.org/). It helps you create a comprehensive, customizable, and secure REST (graph) API on top of pluggable backend storages with no boiler plate code so can focus on your business logic. Implemented as a net/http middleware, it plays well with other middleware like CORS (http://github.com/rs/cors) and is net/context aware thanks to xhandler. REST Layer is an opinionated framework. Unlike many API frameworks, you don’t directly control the routing and you don’t have to write handlers. You just define resources and sub-resources with a schema, the framework automatically figures out what routes to generate behind the scene. You don’t have to take care of the HTTP headers and response, JSON encoding, etc. either. REST layer handles HTTP conditional requests, caching, integrity checking for you. A powerful and extensible validation engine make sure that data comes pre-validated to your custom storage handlers. Generic resource handlers for MongoDB (http://github.com/rs/rest-layer-mongo), ElasticSearch (http://github.com/rs/rest-layer-es) and other databases are also available so you have few to no code to write to make the whole system work. Moreover, REST Layer let you create a graph API by linking resources between them. Thanks to its advanced field selection syntax (and coming support of GraphQL), you can gather resources and their dependencies in a single request, saving you from costly network roundtrips. REST Layer is composed of several sub-packages: See https://github.com/rs/rest-layer/blob/master/README.md for full REST Layer documentation.
<h1 align="center">IrisAdmin</h1> [![Build Status](https://app.travis-ci.com/snowlyg/iris-admin.svg?branch=master)](https://app.travis-ci.com/snowlyg/iris-admin) [![LICENSE](https://img.shields.io/github/license/snowlyg/iris-admin)](https://github.com/snowlyg/iris-admin/blob/master/LICENSE) [![go doc](https://godoc.org/github.com/snowlyg/iris-admin?status.svg)](https://godoc.org/github.com/snowlyg/iris-admin) [![go report](https://goreportcard.com/badge/github.com/snowlyg/iris-admin)](https://goreportcard.com/badge/github.com/snowlyg/iris-admin) [![Build Status](https://codecov.io/gh/snowlyg/iris-admin/branch/master/graph/badge.svg)](https://codecov.io/gh/snowlyg/iris-admin) [简体中文](./README.md) | English #### Project url [GITHUB](https://github.com/snowlyg/iris-admin) | [GITEE](https://gitee.com/snowlyg/iris-admin) **** > This project just for learning golang, welcome to give your suggestions! #### Documentation - [IRIS-ADMIN-DOC](https://doc.snowlyg.com) - [IRIS V12 document for chinese](https://github.com/snowlyg/iris/wiki) - [godoc](https://pkg.go.dev/github.com/snowlyg/iris-admin?utm_source=godoc) [![Gitter](https://badges.gitter.im/iris-go-tenancy/community.svg)](https://gitter.im/iris-go-tenancy/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge) [![Join the chat at https://gitter.im/iris-go-tenancy/iris-admin](https://badges.gitter.im/iris-go-tenancy/iris-admin.svg)](https://gitter.im/iris-go-tenancy/iris-admin?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) #### BLOG - [REST API with iris-go web framework](https://blog.snowlyg.com/iris-go-api-1/) - [How to user iris-go with casbin](https://blog.snowlyg.com/iris-go-api-2/) --- #### Getting started - Get master package , Notice must use `master` version. ```sh ``` #### Program introduction ##### The project consists of multiple plugins, each with different functions - [viper_server] ```go package cache import ( ) var CONFIG Redis // getViperConfig get initialize config db: ` + db + ` addr: "` + CONFIG.Addr + `" password: "` + CONFIG.Password + `" pool-size: ` + poolSize), ``` - [zap_server] ```go ``` - [database] ```go ``` - [casbin] ```go ``` - [cache] ```go ``` - [operation] - [cron_server] ```go ``` - [web] - ```go // WebFunc web framework // - GetTestClient test client // - GetTestLogin test for login // - AddWebStatic add web static path // - AddUploadStatic add upload static path // - Run start ``` - [mongodb] #### Initialize database ##### Simple - Use gorm's `AutoMigrate()` function to auto migrate database. ```go package main import ( ) ``` ##### Custom migrate tools - Use `gormigrate` third party package. Tt's helpful for database migrate and program development. - Detail is see [iris-admin-cmd](https://github.com/snowlyg/iris-admin-example/blob/main/iris/cmd/main.go). --- - Add main.go file. ```go package main import ( ) ``` #### Run project - When you first run this cmd `go run main.go` , you can see some config files in the `config` directory, - and `rbac_model.conf` will be created in your project root directory. ```sh go run main.go ``` #### Module - You can use [iris-admin-rbac](https://github.com/snowlyg/iris-admin-rbac) package to add rbac function for your project quickly. - Your can use AddModule() to add other modules . ```go package main import ( ) ``` #### Default static file path - A static file access path has been built in by default - Static files will upload to `/static/upload` directory. - You can set this config key `static-path` to change the default directory. ```yaml system: ``` #### Use with front-end framework , e.g. vue - Default,you must build vue to the `dist` directory. - Naturally you can set this config key `web-path` to change the default directory. ```go package main import ( ) ``` #### Example - [iris](https://github.com/snowlyg/iris-admin-example/tree/main/iris) - [gin](https://github.com/snowlyg/iris-admin-example/tree/main/gin) #### RBAC - [iris-admin-rbac](https://github.com/snowlyg/iris-admin-rbac) #### Unit test and documentation - Before start unit tests, you need to set two system environment variables `mysqlPwd` and `mysqlAddr`,that will be used when running the test instance。 - helper/tests(https://github.com/snowlyg/helper/tree/main/tests) package the unit test used, it's simple package base on httpexpect/v2(https://github.com/gavv/httpexpect). - [example for unit test](https://github.com/snowlyg/iris-admin-rbac/tree/main/iris/perm/tests) - [example for unit test](https://github.com/snowlyg/iris-admin-rbac/tree/main/gin/authority/test) Before create a http api unit test , you need create a base test file named `main_test.go` , this file have some unit test step : ***Suggest use docker mysql, otherwise if the test fails, there will be a lot of test data left behind*** - 1.create database before test start and delete database when test finish. - 2.create tables and seed test data at once time. - 3.`PartyFunc` and `SeedFunc` use to custom someting for your test model. 内容如下所示: ***main_test.go*** ```go package test import ( ) var TestServer *web_gin.WebServer var TestClient *httptest.Client ``` ***index_test.go*** ```go package test import ( ) var ( ) ``` ## 🔋 JetBrains OS licenses <a href="https://www.jetbrains.com/?from=iris-admin" target="_blank"><img src="https://raw.githubusercontent.com/panjf2000/illustrations/master/jetbrains/jetbrains-variant-4.png" width="230" align="middle"/></a> ## ☕️ Buy me a coffee > Please be sure to leave your name, GitHub account or other social media accounts when you donate by the following means so that I can add it to the list of donors as a token of my appreciation. - [为爱发电](https://afdian.net/@snowlyg/plan) - [donating](https://paypal.me/snowlyg?country.x=C2&locale.x=zh_XC)
Package migrate allows to perform versioned migrations in your MongoDB.
Package docdbelastic provides the API client, operations, and parameter types for Amazon DocumentDB Elastic Clusters. Amazon DocumentDB elastic-clusters support workloads with millions of reads/writes per second and petabytes of storage capacity. Amazon DocumentDB elastic clusters also simplify how developers interact with Amazon DocumentDB elastic-clusters by eliminating the need to choose, manage or upgrade instances. Amazon DocumentDB elastic-clusters were created to: provide a solution for customers looking for a database that provides virtually limitless scale with rich query capabilities and MongoDB API compatibility. give customers higher connection limits, and to reduce downtime from patching. continue investing in a cloud-native, elastic, and class leading architecture for JSON workloads.
Package lock provides distributed locking backed by MongoDB.
Package restlayer is an API framework heavily inspired by the excellent Python Eve (http://python-eve.org/). It helps you create a comprehensive, customizable, and secure REST (graph) API on top of pluggable backend storages with no boiler plate code so can focus on your business logic. Implemented as a net/http middleware, it plays well with other middleware like CORS (http://github.com/rs/cors) and is net/context aware thanks to xhandler. REST Layer is an opinionated framework. Unlike many API frameworks, you don’t directly control the routing and you don’t have to write handlers. You just define resources and sub-resources with a schema, the framework automatically figures out what routes to generate behind the scene. You don’t have to take care of the HTTP headers and response, JSON encoding, etc. either. REST layer handles HTTP conditional requests, caching, integrity checking for you. A powerful and extensible validation engine make sure that data comes pre-validated to your custom storage handlers. Generic resource handlers for MongoDB (http://github.com/clarify/rested/storers/mongo) and other databases are also available so you have few to no code to write to make the whole system work. Moreover, REST Layer let you create a graph API by linking resources between them. Thanks to its advanced field selection syntax, you can gather resources and their dependencies in a single request, saving you from costly network roundtrips. REST Layer is composed of several sub-packages: See https://github.com/clarify/rested/blob/master/README.md for full REST Layer documentation.