This is the official Go SDK for Oracle Cloud Infrastructure Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#installing for installation instructions. Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring for configuration instructions. The following example shows how to get started with the SDK. The example belows creates an identityClient struct with the default configuration. It then utilizes the identityClient to list availability domains and prints them out to stdout More examples can be found in the SDK Github repo: https://github.com/oracle/oci-go-sdk/tree/master/example Optional fields are represented with the `mandatory:"false"` tag on input structs. The SDK will omit all optional fields that are nil when making requests. In the case of enum-type fields, the SDK will omit fields whose value is an empty string. The SDK uses pointers for primitive types in many input structs. To aid in the construction of such structs, the SDK provides functions that return a pointer for a given value. For example: The SDK exposes functionality that allows the user to customize any http request before is sent to the service. You can do so by setting the `Interceptor` field in any of the `Client` structs. For example: The Interceptor closure gets called before the signing process, thus any changes done to the request will be properly signed and submitted to the service. The SDK exposes a stand-alone signer that can be used to signing custom requests. Related code can be found here: https://github.com/oracle/oci-go-sdk/blob/master/common/http_signer.go. The example below shows how to create a default signer. The signer also allows more granular control on the headers used for signing. For example: You can combine a custom signer with the exposed clients in the SDK. This allows you to add custom signed headers to the request. Following is an example: Bear in mind that some services have a white list of headers that it expects to be signed. Therefore, adding an arbitrary header can result in authentications errors. To see a runnable example, see https://github.com/oracle/oci-go-sdk/blob/master/example/example_identity_test.go For more information on the signing algorithm refer to: https://docs.cloud.oracle.com/Content/API/Concepts/signingrequests.htm Some operations accept or return polymorphic JSON objects. The SDK models such objects as interfaces. Further the SDK provides structs that implement such interfaces. Thus, for all operations that expect interfaces as input, pass the struct in the SDK that satisfies such interface. For example: In the case of a polymorphic response you can type assert the interface to the expected type. For example: An example of polymorphic JSON request handling can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_test.go#L63 When calling a list operation, the operation will retrieve a page of results. To retrieve more data, call the list operation again, passing in the value of the most recent response's OpcNextPage as the value of Page in the next list operation call. When there is no more data the OpcNextPage field will be nil. An example of pagination using this logic can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_pagination_test.go The SDK has a built-in logging mechanism used internally. The internal logging logic is used to record the raw http requests, responses and potential errors when (un)marshalling request and responses. Built-in logging in the SDK is controlled via the environment variable "OCI_GO_SDK_DEBUG" and its contents. The below are possible values for the "OCI_GO_SDK_DEBUG" variable 1. "info" or "i" enables all info logging messages 2. "debug" or "d" enables all debug and info logging messages 3. "verbose" or "v" or "1" enables all verbose, debug and info logging messages 4. "null" turns all logging messages off. If the value of the environment variable does not match any of the above then default logging level is "info". If the environment variable is not present then no logging messages are emitted. The default destination for logging is Stderr and if you want to output log to a file you can set via environment variable "OCI_GO_SDK_LOG_OUTPUT_MODE". The below are possible values 1. "file" or "f" enables all logging output saved to file 2. "combine" or "c" enables all logging output to both stderr and file You can also customize the log file location and name via "OCI_GO_SDK_LOG_FILE" environment variable, the value should be the path to a specific file If this environment variable is not present, the default location will be the project root path Sometimes you may need to wait until an attribute of a resource, such as an instance or a VCN, reaches a certain state. An example of this would be launching an instance and then waiting for the instance to become available, or waiting until a subnet in a VCN has been terminated. You might also want to retry the same operation again if there's network issue etc... This can be accomplished by using the RequestMetadata.RetryPolicy(request level configuration), alternatively, global(all services) or client level RetryPolicy configration is also possible. You can find the examples here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_retry_test.go If you are trying to make a PUT/POST API call with binary request body, please make sure the binary request body is resettable, which means the request body should inherit Seeker interface. The Retry behavior Precedence (Highest to lowest) is defined as below:- The OCI Go SDK defines a default retry policy that retries on the errors suitable for retries (see https://docs.oracle.com/en-us/iaas/Content/API/References/apierrors.htm), for a recommended period of time (up to 7 attempts spread out over at most approximately 1.5 minutes). The default retry policy is defined by : Default Retry-able Errors Below is the list of default retry-able errors for which retry attempts should be made. The following errors should be retried (with backoff). HTTP Code Customer-facing Error Code Apart from the above errors, retries should also be attempted in the following Client Side errors : 1. HTTP Connection timeout 2. Request Connection Errors 3. Request Exceptions 4. Other timeouts (like Read Timeout) The above errors can be avoided through retrying and hence, are classified as the default retry-able errors. Additionally, retries should also be made for Circuit Breaker exceptions (Exceptions raised by Circuit Breaker in an open state) Default Termination Strategy The termination strategy defines when SDKs should stop attempting to retry. In other words, it's the deadline for retries. The OCI SDKs should stop retrying the operation after 7 retry attempts. This means the SDKs will have retried for ~98 seconds or ~1.5 minutes have elapsed due to total delays. SDKs will make a total of 8 attempts. (1 initial request + 7 retries) Default Delay Strategy Default Delay Strategy - The delay strategy defines the amount of time to wait between each of the retry attempts. The default delay strategy chosen for the SDK – Exponential backoff with jitter, using: 1. The base time to use in retry calculations will be 1 second 2. An exponent of 2. When calculating the next retry time, the SDK will raise this to the power of the number of attempts 3. A maximum wait time between calls of 30 seconds (Capped) 4. Added jitter value between 0-1000 milliseconds to spread out the requests Configure and use default retry policy You can set this retry policy for a single request: or for all requests made by a client: or for all requests made by all clients: or setting default retry via environment varaible, which is a global switch for all services: Some services enable retry for operations by default, this can be overridden using any alternatives mentioned above. To know which service operations have retries enabled by default, look at the operation's description in the SDK - it will say whether that it has retries enabled by default Some resources may have to be replicated across regions and are only eventually consistent. That means the request to create, update, or delete the resource succeeded, but the resource is not available everywhere immediately. Creating, updating, or deleting any resource in the Identity service is affected by eventual consistency, and doing so may cause other operations in other services to fail until the Identity resource has been replicated. For example, the request to CreateTag in the Identity service in the home region succeeds, but immediately using that created tag in another region in a request to LaunchInstance in the Compute service may fail. If you are creating, updating, or deleting resources in the Identity service, we recommend using an eventually consistent retry policy for any service you access. The default retry policy already deals with eventual consistency. Example: This retry policy will use a different strategy if an eventually consistent change was made in the recent past (called the "eventually consistent window", currently defined to be 4 minutes after the eventually consistent change). This special retry policy for eventual consistency will: 1. make up to 9 attempts (including the initial attempt); if an attempt is successful, no more attempts will be made 2. retry at most until (a) approximately the end of the eventually consistent window or (b) the end of the default retry period of about 1.5 minutes, whichever is farther in the future; if an attempt is successful, no more attempts will be made, and the OCI Go SDK will not wait any longer 3. retry on the error codes 400-RelatedResourceNotAuthorizedOrNotFound, 404-NotAuthorizedOrNotFound, and 409-NotAuthorizedOrResourceAlreadyExists, for which the default retry policy does not retry, in addition to the errors the default retry policy retries on (see https://docs.oracle.com/en-us/iaas/Content/API/References/apierrors.htm) If there were no eventually consistent actions within the recent past, then this special retry strategy is not used. If you want a retry policy that does not handle eventual consistency in a special way, for example because you retry on all error responses, you can use DefaultRetryPolicyWithoutEventualConsistency or NewRetryPolicyWithOptions with the common.ReplaceWithValuesFromRetryPolicy(common.DefaultRetryPolicyWithoutEventualConsistency()) option: The NewRetryPolicy function also creates a retry policy without eventual consistency. Circuit Breaker can prevent an application repeatedly trying to execute an operation that is likely to fail, allowing it to continue without waiting for the fault to be rectified or wasting CPU cycles, of course, it also enables an application to detect whether the fault has been resolved. If the problem appears to have been rectified, the application can attempt to invoke the operation. Go SDK intergrates sony/gobreaker solution, wraps in a circuit breaker object, which monitors for failures. Once the failures reach a certain threshold, the circuit breaker trips, and all further calls to the circuit breaker return with an error, this also saves the service from being overwhelmed with network calls in case of an outage. Circuit Breaker Configuration Definitions 1. Failure Rate Threshold - The state of the CircuitBreaker changes from CLOSED to OPEN when the failure rate is equal or greater than a configurable threshold. For example when more than 50% of the recorded calls have failed. 2. Reset Timeout - The timeout after which an open circuit breaker will attempt a request if a request is made 3. Failure Exceptions - The list of Exceptions that will be regarded as failures for the circuit. 4. Minimum number of calls/ Volume threshold - Configures the minimum number of calls which are required (per sliding window period) before the CircuitBreaker can calculate the error rate. 1. Failure Rate Threshold - 80% - This means when 80% of the requests calculated for a time window of 120 seconds have failed then the circuit will transition from closed to open. 2. Minimum number of calls/ Volume threshold - A value of 10, for the above defined time window of 120 seconds. 3. Reset Timeout - 30 seconds to wait before setting the breaker to halfOpen state, and trying the action again. 4. Failure Exceptions - The failures for the circuit will only be recorded for the retryable/transient exceptions. This means only the following exceptions will be regarded as failure for the circuit. HTTP Code Customer-facing Error Code Apart from the above, the following client side exceptions will also be treated as a failure for the circuit : 1. HTTP Connection timeout 2. Request Connection Errors 3. Request Exceptions 4. Other timeouts (like Read Timeout) Go SDK enable circuit breaker with default configuration for most of the service clients, if you don't want to enable the solution, can disable the functionality before your application running Go SDK also supports customize Circuit Breaker with specified configurations. You can find the examples here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_circuitbreaker_test.go To know which service clients have circuit breakers enabled, look at the service client's description in the SDK - it will say whether that it has circuit breakers enabled by default The GO SDK uses the net/http package to make calls to OCI services. If your environment requires you to use a proxy server for outgoing HTTP requests then you can set this up in the following ways: 1. Configuring environment variable as described here https://golang.org/pkg/net/http/#ProxyFromEnvironment 2. Modifying the underlying Transport struct for a service client In order to modify the underlying Transport struct in HttpClient, you can do something similar to (sample code for audit service client): The Object Storage service supports multipart uploads to make large object uploads easier by splitting the large object into parts. The Go SDK supports raw multipart upload operations for advanced use cases, as well as a higher level upload class that uses the multipart upload APIs. For links to the APIs used for multipart upload operations, see Managing Multipart Uploads (https://docs.cloud.oracle.com/iaas/Content/Object/Tasks/usingmultipartuploads.htm). Higher level multipart uploads are implemented using the UploadManager, which will: split a large object into parts for you, upload the parts in parallel, and then recombine and commit the parts as a single object in storage. This code sample shows how to use the UploadManager to automatically split an object into parts for upload to simplify interaction with the Object Storage service: https://github.com/oracle/oci-go-sdk/blob/master/example/example_objectstorage_test.go Some response fields are enum-typed. In the future, individual services may return values not covered by existing enums for that field. To address this possibility, every enum-type response field is a modeled as a type that supports any string. Thus if a service returns a value that is not recognized by your version of the SDK, then the response field will be set to this value. When individual services return a polymorphic JSON response not available as a concrete struct, the SDK will return an implementation that only satisfies the interface modeling the polymorphic JSON response. If you are using a version of the SDK released prior to the announcement of a new region, you may need to use a workaround to reach it, depending on whether the region is in the oraclecloud.com realm. A region is a localized geographic area. For more information on regions and how to identify them, see Regions and Availability Domains(https://docs.cloud.oracle.com/iaas/Content/General/Concepts/regions.htm). A realm is a set of regions that share entities. You can identify your realm by looking at the domain name at the end of the network address. For example, the realm for xyz.abc.123.oraclecloud.com is oraclecloud.com. oraclecloud.com Realm: For regions in the oraclecloud.com realm, even if common.Region does not contain the new region, the forward compatibility of the SDK can automatically handle it. You can pass new region names just as you would pass ones that are already defined. For more information on passing region names in the configuration, see Configuring (https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring). For details on common.Region, see (https://github.com/oracle/oci-go-sdk/blob/master/common/common.go). Other Realms: For regions in realms other than oraclecloud.com, you can use the following workarounds to reach new regions with earlier versions of the SDK. NOTE: Be sure to supply the appropriate endpoints for your region. You can overwrite the target host with client.Host: If you are authenticating via instance principals, you can set the authentication endpoint in an environment variable: Got a fix for a bug, or a new feature you'd like to contribute? The SDK is open source and accepting pull requests on GitHub https://github.com/oracle/oci-go-sdk Licensing information available at: https://github.com/oracle/oci-go-sdk/blob/master/LICENSE.txt To be notified when a new version of the Go SDK is released, subscribe to the following feed: https://github.com/oracle/oci-go-sdk/releases.atom Please refer to this link: https://github.com/oracle/oci-go-sdk#help
Package crypto provides a toolbox of advanced cryptographic primitives, for applications that need more than straightforward signing and encryption. The cornerstone of this toolbox is the 'abstract' sub-package, which defines abstract interfaces to cryptographic primitives designed to be independent of specific cryptographic algorithms, to facilitate upgrading applications to new cryptographic algorithms or switching to alternative algorithms for experimentation purposes. This toolkit's public-key crypto API includes an abstract.Group interface generically supporting a broad class of group-based public-key primitives including DSA-style integer residue groups and elliptic curve groups. Users of this API can thus write higher-level crypto algorithms such as zero-knowledge proofs without knowing or caring exactly what kind of group, let alone which precise security parameters or elliptic curves, are being used. The abstract group interface supports the standard algebraic operations on group elements and scalars that nontrivial public-key algorithms tend to rely on. The interface uses additive group terminology typical for elliptic curves, such that point addition is homomorphically equivalent to adding their (potentially secret) scalar multipliers. But the API and its operations apply equally well to DSA-style integer groups. The abstract.Suite interface builds further on the abstract.Group API to represent an abstraction of entire pluggable ciphersuites, which include a group (e.g., curve) suitable for advanced public-key crypto together with a suitably matched set of symmetric-key crypto algorithms. As a trivial example, generating a public/private keypair is as simple as: The first statement picks a private key (Scalar) from a specified source of cryptographic random or pseudo-random bits, while the second performs elliptic curve scalar multiplication of the curve's standard base point (indicated by the 'nil' argument to Mul) by the scalar private key 'a'. Similarly, computing a Diffie-Hellman shared secret using Alice's private key 'a' and Bob's public key 'B' can be done via: Note that we use 'Mul' rather than 'Exp' here because the library uses the additive-group terminology common for elliptic curve crypto, rather than the multiplicative-group terminology of traditional integer groups - but the two are semantically equivalent and the interface itself works for both elliptic curve and integer groups. See below for more complete examples. Various sub-packages provide several specific implementations of these abstract cryptographic interfaces. In particular, the 'nist' sub-package provides implementations of modular integer groups underlying conventional DSA-style algorithms, and of NIST-standardized elliptic curves built on the Go crypto library. The 'edwards' sub-package provides the abstract group interface using more recent Edwards curves, including the popular Ed25519 curve. The 'openssl' sub-package offers an alternative implementation of NIST-standardized elliptic curves and symmetric-key algorithms, built as wrappers around OpenSSL's crypto library. Other sub-packages build more interesting high-level cryptographic tools atop these abstract primitive interfaces, including: - poly: Polynomial commitment and verifiable Shamir secret splitting for implementing verifiable 't-of-n' threshold cryptographic schemes. This can be used to encrypt a message so that any 2 out of 3 receivers must work together to decrypt it, for example. - proof: An implementation of the general Camenisch/Stadler framework for discrete logarithm knowledge proofs. This system supports both interactive and non-interactive proofs of a wide variety of statements such as, "I know the secret x associated with public key X or I know the secret y associated with public key Y", without revealing anything about either secret or even which branch of the "or" clause is true. - anon: Anonymous and pseudonymous public-key encryption and signing, where the sender of a signed message or the receiver of an encrypted message is defined as an explicit anonymity set containing several public keys rather than just one. For example, a member of an organization's board of trustees might prove to be a member of the board without revealing which member she is. - shuffle: Verifiable cryptographic shuffles of ElGamal ciphertexts, which can be used to implement (for example) voting or auction schemes that keep the sources of individual votes or bids private without anyone having to trust the shuffler(s) to shuffle votes/bids honestly. For now this library should currently be considered experimental: it will definitely be changing in non-backward-compatible ways, and it will need independent security review before it should be considered ready for use in security-critical applications. However, we intend to bring the library closer to stability and real-world usability as quickly as development resources permit, and as interest and application demand dictates. As should be obvious, this library is intended the use of developers who are at least moderately knowledgeable about crypto. If you want a crypto library that makes it easy to implement "basic crypto" functionality correctly - i.e., plain public-key encryption and signing - then the NaCl/Sodium pursues this worthy goal (http://doc.libsodium.org). This toolkit's purpose is to make it possible - and preferably but not necessarily easy - to do slightly more interesting things that most current crypto libraries don't support effectively. The one existing crypto library that this toolkit is probably most comparable to is the Charm rapid prototyping library for Python (http://charm-crypto.com/). This library incorporates and/or builds on existing code from a variety of sources, as documented in the relevant sub-packages. This example illustrates how to use the crypto toolkit's abstract group API to perform basic Diffie-Hellman key exchange calculations, using the NIST-standard P256 elliptic curve in this case. Any other suitable elliptic curve or other cryptographic group may be used simply by changing the first line that picks the suite. This example illustrates how the crypto toolkit may be used to perform "pure" ElGamal encryption, in which the message to be encrypted is small enough to be embedded directly within a group element (e.g., in an elliptic curve point). For basic background on ElGamal encryption see for example http://en.wikipedia.org/wiki/ElGamal_encryption. Most public-key crypto libraries tend not to support embedding data in points, in part because for "vanilla" public-key encryption you don't need it: one would normally just generate an ephemeral Diffie-Hellman secret and use that to seed a symmetric-key crypto algorithm such as AES, which is much more efficient per bit and works for arbitrary-length messages. However, in many advanced public-key crypto algorithms it is often useful to be able to embedded data directly into points and compute with them: as just one of many examples, the proactively verifiable anonymous messaging scheme prototyped in Verdict (see http://dedis.cs.yale.edu/dissent/papers/verdict-abs). For fancier versions of ElGamal encryption implemented in this toolkit see for example anon.Encrypt, which encrypts a message for one of several possible receivers forming an explicit anonymity set.
Package sparse provides implementations of selected sparse matrix formats. Matrices and linear algebra are used extensively in scientific computing and machine learning applications. Large datasets are analysed comprising vectors of numerical features that represent some object. The nature of feature encoding schemes, especially those like "one hot", tends to lead to vectors with mostly zero values for many of the features. In text mining applications, where features are typically terms from a vocabulary, it is not uncommon for 99% of the elements within these vectors to contain zero values. Sparse matrix formats take advantage of this fact to optimise memory usage and processing performance by only storing and processing non-zero values. Sparse matrix formats can broadly be divided into 3 main categories: 1. Creational - Sparse matrix formats suited to construction and building of matrices. Matrix formats in this category include DOK (Dictionary Of Keys) and COO (COOrdinate aka triplet). 2. Operational - Sparse matrix formats suited to arithmetic operations e.g. multiplication. Matrix formats in this category include CSR (Compressed Sparse Row aka CRS - Compressed Row Storage) and CSC (Compressed Sparse Column aka CCS - Compressed Column Storage) 3. Specialised - Specialised matrix formats suiting specific sparsity patterns. Matrix formats in this category include DIA (DIAgonal) for efficiently storing and manipulating symmetric diagonal matrices. A common practice is to construct sparse matrices using a creational format e.g. DOK or COO and then convert them to an operational format e.g. CSR for arithmetic operations. All sparse matrix implementations in this package implement the Matrix interface defined within the gonum/mat package and so may be used interchangeably with matrix types defined within the package e.g. mat.Dense, mat.VecDense, etc.
Package crypto provides a toolbox of advanced cryptographic primitives, for applications that need more than straightforward signing and encryption. The cornerstone of this toolbox is the 'abstract' sub-package, which defines abstract interfaces to cryptographic primitives designed to be independent of specific cryptographic algorithms, to facilitate upgrading applications to new cryptographic algorithms or switching to alternative algorithms for experimentation purposes. This toolkit's public-key crypto API includes an abstract.Group interface generically supporting a broad class of group-based public-key primitives including DSA-style integer residue groups and elliptic curve groups. Users of this API can thus write higher-level crypto algorithms such as zero-knowledge proofs without knowing or caring exactly what kind of group, let alone which precise security parameters or elliptic curves, are being used. The abstract group interface supports the standard algebraic operations on group elements and scalars that nontrivial public-key algorithms tend to rely on. The interface uses additive group terminology typical for elliptic curves, such that point addition is homomorphically equivalent to adding their (potentially secret) scalar multipliers. But the API and its operations apply equally well to DSA-style integer groups. The abstract.Suite interface builds further on the abstract.Group API to represent an abstraction of entire pluggable ciphersuites, which include a group (e.g., curve) suitable for advanced public-key crypto together with a suitably matched set of symmetric-key crypto algorithms. As a trivial example, generating a public/private keypair is as simple as: The first statement picks a private key (Scalar) from a specified source of cryptographic random or pseudo-random bits, while the second performs elliptic curve scalar multiplication of the curve's standard base point (indicated by the 'nil' argument to Mul) by the scalar private key 'a'. Similarly, computing a Diffie-Hellman shared secret using Alice's private key 'a' and Bob's public key 'B' can be done via: Note that we use 'Mul' rather than 'Exp' here because the library uses the additive-group terminology common for elliptic curve crypto, rather than the multiplicative-group terminology of traditional integer groups - but the two are semantically equivalent and the interface itself works for both elliptic curve and integer groups. See below for more complete examples. Various sub-packages provide several specific implementations of these abstract cryptographic interfaces. In particular, the 'nist' sub-package provides implementations of modular integer groups underlying conventional DSA-style algorithms, and of NIST-standardized elliptic curves built on the Go crypto library. The 'edwards' sub-package provides the abstract group interface using more recent Edwards curves, including the popular Ed25519 curve. The 'openssl' sub-package offers an alternative implementation of NIST-standardized elliptic curves and symmetric-key algorithms, built as wrappers around OpenSSL's crypto library. Other sub-packages build more interesting high-level cryptographic tools atop these abstract primitive interfaces, including: - poly: Polynomial commitment and verifiable Shamir secret splitting for implementing verifiable 't-of-n' threshold cryptographic schemes. This can be used to encrypt a message so that any 2 out of 3 receivers must work together to decrypt it, for example. - proof: An implementation of the general Camenisch/Stadler framework for discrete logarithm knowledge proofs. This system supports both interactive and non-interactive proofs of a wide variety of statements such as, "I know the secret x associated with public key X or I know the secret y associated with public key Y", without revealing anything about either secret or even which branch of the "or" clause is true. - anon: Anonymous and pseudonymous public-key encryption and signing, where the sender of a signed message or the receiver of an encrypted message is defined as an explicit anonymity set containing several public keys rather than just one. For example, a member of an organization's board of trustees might prove to be a member of the board without revealing which member she is. - shuffle: Verifiable cryptographic shuffles of ElGamal ciphertexts, which can be used to implement (for example) voting or auction schemes that keep the sources of individual votes or bids private without anyone having to trust the shuffler(s) to shuffle votes/bids honestly. For now this library should currently be considered experimental: it will definitely be changing in non-backward-compatible ways, and it will need independent security review before it should be considered ready for use in security-critical applications. However, we intend to bring the library closer to stability and real-world usability as quickly as development resources permit, and as interest and application demand dictates. As should be obvious, this library is intended the use of developers who are at least moderately knowledgeable about crypto. If you want a crypto library that makes it easy to implement "basic crypto" functionality correctly - i.e., plain public-key encryption and signing - then the NaCl/Sodium pursues this worthy goal (http://doc.libsodium.org). This toolkit's purpose is to make it possible - and preferably but not necessarily easy - to do slightly more interesting things that most current crypto libraries don't support effectively. The one existing crypto library that this toolkit is probably most comparable to is the Charm rapid prototyping library for Python (http://charm-crypto.com/). This library incorporates and/or builds on existing code from a variety of sources, as documented in the relevant sub-packages. This example illustrates how to use the crypto toolkit's abstract group API to perform basic Diffie-Hellman key exchange calculations, using the NIST-standard P256 elliptic curve in this case. Any other suitable elliptic curve or other cryptographic group may be used simply by changing the first line that picks the suite. This example illustrates how the crypto toolkit may be used to perform "pure" ElGamal encryption, in which the message to be encrypted is small enough to be embedded directly within a group element (e.g., in an elliptic curve point). For basic background on ElGamal encryption see for example http://en.wikipedia.org/wiki/ElGamal_encryption. Most public-key crypto libraries tend not to support embedding data in points, in part because for "vanilla" public-key encryption you don't need it: one would normally just generate an ephemeral Diffie-Hellman secret and use that to seed a symmetric-key crypto algorithm such as AES, which is much more efficient per bit and works for arbitrary-length messages. However, in many advanced public-key crypto algorithms it is often useful to be able to embedded data directly into points and compute with them: as just one of many examples, the proactively verifiable anonymous messaging scheme prototyped in Verdict (see http://dedis.cs.yale.edu/dissent/papers/verdict-abs). For fancier versions of ElGamal encryption implemented in this toolkit see for example anon.Encrypt, which encrypts a message for one of several possible receivers forming an explicit anonymity set.
This is the official Go SDK for Oracle Cloud Infrastructure Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#installing for installation instructions. Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring for configuration instructions. The following example shows how to get started with the SDK. The example belows creates an identityClient struct with the default configuration. It then utilizes the identityClient to list availability domains and prints them out to stdout More examples can be found in the SDK Github repo: https://github.com/oracle/oci-go-sdk/tree/master/example Optional fields are represented with the `mandatory:"false"` tag on input structs. The SDK will omit all optional fields that are nil when making requests. In the case of enum-type fields, the SDK will omit fields whose value is an empty string. The SDK uses pointers for primitive types in many input structs. To aid in the construction of such structs, the SDK provides functions that return a pointer for a given value. For example: The SDK exposes functionality that allows the user to customize any http request before is sent to the service. You can do so by setting the `Interceptor` field in any of the `Client` structs. For example: The Interceptor closure gets called before the signing process, thus any changes done to the request will be properly signed and submitted to the service. The SDK exposes a stand-alone signer that can be used to signing custom requests. Related code can be found here: https://github.com/oracle/oci-go-sdk/blob/master/common/http_signer.go. The example below shows how to create a default signer. The signer also allows more granular control on the headers used for signing. For example: You can combine a custom signer with the exposed clients in the SDK. This allows you to add custom signed headers to the request. Following is an example: Bear in mind that some services have a white list of headers that it expects to be signed. Therefore, adding an arbitrary header can result in authentications errors. To see a runnable example, see https://github.com/oracle/oci-go-sdk/blob/master/example/example_identity_test.go For more information on the signing algorithm refer to: https://docs.cloud.oracle.com/Content/API/Concepts/signingrequests.htm Some operations accept or return polymorphic JSON objects. The SDK models such objects as interfaces. Further the SDK provides structs that implement such interfaces. Thus, for all operations that expect interfaces as input, pass the struct in the SDK that satisfies such interface. For example: In the case of a polymorphic response you can type assert the interface to the expected type. For example: An example of polymorphic JSON request handling can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_test.go#L63 When calling a list operation, the operation will retrieve a page of results. To retrieve more data, call the list operation again, passing in the value of the most recent response's OpcNextPage as the value of Page in the next list operation call. When there is no more data the OpcNextPage field will be nil. An example of pagination using this logic can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_pagination_test.go The SDK has a built-in logging mechanism used internally. The internal logging logic is used to record the raw http requests, responses and potential errors when (un)marshalling request and responses. Built-in logging in the SDK is controlled via the environment variable "OCI_GO_SDK_DEBUG" and its contents. The below are possible values for the "OCI_GO_SDK_DEBUG" variable 1. "info" or "i" enables all info logging messages 2. "debug" or "d" enables all debug and info logging messages 3. "verbose" or "v" or "1" enables all verbose, debug and info logging messages 4. "null" turns all logging messages off. If the value of the environment variable does not match any of the above then default logging level is "info". If the environment variable is not present then no logging messages are emitted. The default destination for logging is Stderr and if you want to output log to a file you can set via environment variable "OCI_GO_SDK_LOG_OUTPUT_MODE". The below are possible values 1. "file" or "f" enables all logging output saved to file 2. "combine" or "c" enables all logging output to both stderr and file You can also customize the log file location and name via "OCI_GO_SDK_LOG_FILE" environment variable, the value should be the path to a specific file If this environment variable is not present, the default location will be the project root path Sometimes you may need to wait until an attribute of a resource, such as an instance or a VCN, reaches a certain state. An example of this would be launching an instance and then waiting for the instance to become available, or waiting until a subnet in a VCN has been terminated. You might also want to retry the same operation again if there's network issue etc... This can be accomplished by using the RequestMetadata.RetryPolicy(request level configuration), alternatively, global(all services) or client level RetryPolicy configration is also possible. You can find the examples here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_retry_test.go If you are trying to make a PUT/POST API call with binary request body, please make sure the binary request body is resettable, which means the request body should inherit Seeker interface. The Retry behavior Precedence (Highest to lowest) is defined as below:- The OCI Go SDK defines a default retry policy that retries on the errors suitable for retries (see https://docs.oracle.com/en-us/iaas/Content/API/References/apierrors.htm), for a recommended period of time (up to 7 attempts spread out over at most approximately 1.5 minutes). This default retry policy can be created using: You can set this retry policy for a single request: or for all requests made by a client: or for all requests made by all clients: or setting default retry via environment varaible, which is a global switch for all services: Some services enable retry for operations by default, this can be overridden using any alternatives mentioned above. Some resources may have to be replicated across regions and are only eventually consistent. That means the request to create, update, or delete the resource succeeded, but the resource is not available everywhere immediately. Creating, updating, or deleting any resource in the Identity service is affected by eventual consistency, and doing so may cause other operations in other services to fail until the Identity resource has been replicated. For example, the request to CreateTag in the Identity service in the home region succeeds, but immediately using that created tag in another region in a request to LaunchInstance in the Compute service may fail. If you are creating, updating, or deleting resources in the Identity service, we recommend using an eventually consistent retry policy for any service you access. The default retry policy already deals with eventual consistency. Example: This retry policy will use a different strategy if an eventually consistent change was made in the recent past (called the "eventually consistent window", currently defined to be 4 minutes after the eventually consistent change). This special retry policy for eventual consistency will: 1. make up to 9 attempts (including the initial attempt); if an attempt is successful, no more attempts will be made 2. retry at most until (a) approximately the end of the eventually consistent window or (b) the end of the default retry period of about 1.5 minutes, whichever is farther in the future; if an attempt is successful, no more attempts will be made, and the OCI Go SDK will not wait any longer 3. retry on the error codes 400-RelatedResourceNotAuthorizedOrNotFound, 404-NotAuthorizedOrNotFound, and 409-NotAuthorizedOrResourceAlreadyExists, for which the default retry policy does not retry, in addition to the errors the default retry policy retries on (see https://docs.oracle.com/en-us/iaas/Content/API/References/apierrors.htm) If there were no eventually consistent actions within the recent past, then this special retry strategy is not used. If you want a retry policy that does not handle eventual consistency in a special way, for example because you retry on all error responses, you can use DefaultRetryPolicyWithoutEventualConsistency or NewRetryPolicyWithOptions with the common.ReplaceWithValuesFromRetryPolicy(common.DefaultRetryPolicyWithoutEventualConsistency()) option: The NewRetryPolicy function also creates a retry policy without eventual consistency. Circuit Breaker can prevent an application repeatedly trying to execute an operation that is likely to fail, allowing it to continue without waiting for the fault to be rectified or wasting CPU cycles, of course, it also enables an application to detect whether the fault has been resolved. If the problem appears to have been rectified, the application can attempt to invoke the operation. Go SDK intergrates sony/gobreaker solution, wraps in a circuit breaker object, which monitors for failures. Once the failures reach a certain threshold, the circuit breaker trips, and all further calls to the circuit breaker return with an error, this also saves the service from being overwhelmed with network calls in case of an outage. Go SDK enable circuit breaker with default configuration, if you don't want to enable the solution, can disable the functionality before your application running Go SDK also supports customize Circuit Breaker with specified configuratoins. You can find the examples here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_circuitbreaker_test.go The GO SDK uses the net/http package to make calls to OCI services. If your environment requires you to use a proxy server for outgoing HTTP requests then you can set this up in the following ways: 1. Configuring environment variable as described here https://golang.org/pkg/net/http/#ProxyFromEnvironment 2. Modifying the underlying Transport struct for a service client In order to modify the underlying Transport struct in HttpClient, you can do something similar to (sample code for audit service client): The Object Storage service supports multipart uploads to make large object uploads easier by splitting the large object into parts. The Go SDK supports raw multipart upload operations for advanced use cases, as well as a higher level upload class that uses the multipart upload APIs. For links to the APIs used for multipart upload operations, see Managing Multipart Uploads (https://docs.cloud.oracle.com/iaas/Content/Object/Tasks/usingmultipartuploads.htm). Higher level multipart uploads are implemented using the UploadManager, which will: split a large object into parts for you, upload the parts in parallel, and then recombine and commit the parts as a single object in storage. This code sample shows how to use the UploadManager to automatically split an object into parts for upload to simplify interaction with the Object Storage service: https://github.com/oracle/oci-go-sdk/blob/master/example/example_objectstorage_test.go Some response fields are enum-typed. In the future, individual services may return values not covered by existing enums for that field. To address this possibility, every enum-type response field is a modeled as a type that supports any string. Thus if a service returns a value that is not recognized by your version of the SDK, then the response field will be set to this value. When individual services return a polymorphic JSON response not available as a concrete struct, the SDK will return an implementation that only satisfies the interface modeling the polymorphic JSON response. If you are using a version of the SDK released prior to the announcement of a new region, you may need to use a workaround to reach it, depending on whether the region is in the oraclecloud.com realm. A region is a localized geographic area. For more information on regions and how to identify them, see Regions and Availability Domains(https://docs.cloud.oracle.com/iaas/Content/General/Concepts/regions.htm). A realm is a set of regions that share entities. You can identify your realm by looking at the domain name at the end of the network address. For example, the realm for xyz.abc.123.oraclecloud.com is oraclecloud.com. oraclecloud.com Realm: For regions in the oraclecloud.com realm, even if common.Region does not contain the new region, the forward compatibility of the SDK can automatically handle it. You can pass new region names just as you would pass ones that are already defined. For more information on passing region names in the configuration, see Configuring (https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring). For details on common.Region, see (https://github.com/oracle/oci-go-sdk/blob/master/common/common.go). Other Realms: For regions in realms other than oraclecloud.com, you can use the following workarounds to reach new regions with earlier versions of the SDK. NOTE: Be sure to supply the appropriate endpoints for your region. You can overwrite the target host with client.Host: If you are authenticating via instance principals, you can set the authentication endpoint in an environment variable: Got a fix for a bug, or a new feature you'd like to contribute? The SDK is open source and accepting pull requests on GitHub https://github.com/oracle/oci-go-sdk Licensing information available at: https://github.com/oracle/oci-go-sdk/blob/master/LICENSE.txt To be notified when a new version of the Go SDK is released, subscribe to the following feed: https://github.com/oracle/oci-go-sdk/releases.atom Please refer to this link: https://github.com/oracle/oci-go-sdk#help
Package seccomp provides a way to install a syscall filter for a Linux process. It uses the seccomp (secure computing) BPF filters.
Package serverlessapplicationrepository provides the API client, operations, and parameter types for AWSServerlessApplicationRepository. The AWS Serverless Application Repository makes it easy for developers and enterprises to quickly find and deploy serverless applications in the AWS Cloud. For more information about serverless applications, see Serverless Computing and Applications on the AWS website. The AWS Serverless Application Repository is deeply integrated with the AWS Lambda console, so that developers of all levels can get started with serverless computing without needing to learn anything new. You can use category keywords to browse for applications such as web and mobile backends, data processing applications, or chatbots. You can also search for applications by name, publisher, or event source. To use an application, you simply choose it, configure any required fields, and deploy it with a few clicks. You can also easily publish applications, sharing them publicly with the community at large, or privately within your team or across your organization. To publish a serverless application (or app), you can use the AWS Management Console, AWS Command Line Interface (AWS CLI), or AWS SDKs to upload the code. Along with the code, you upload a simple manifest file, also known as the AWS Serverless Application Model (AWS SAM) template. For more information about AWS SAM, see AWS Serverless Application Model (AWS SAM) on the AWS Labs GitHub repository. The AWS Serverless Application Repository Developer Guide contains more information about the two developer experiences available: Publishing Applications – Configure and upload applications to make them
Package ecdh implements the Diffie-Hellman key exchange using elliptic curves (ECDH). It directly provides ECDH implementations for the NIST curves P224, P256, P384, and Bernstein's Cruve25519. For generic curves this implementation of ECDH only uses the x-coordinate as the computed secret.
Package jump implements the "jump consistent hash" algorithm. Example Reference C++ implementation[1] Jump consistent hash works by computing when its output changes as the number of buckets increases. Let ch(key, num_buckets) be the consistent hash for the key when there are num_buckets buckets. Clearly, for any key, k, ch(k, 1) is 0, since there is only the one bucket. In order for the consistent hash function to balanced, ch(k, 2) will have to stay at 0 for half the keys, k, while it will have to jump to 1 for the other half. In general, ch(k, n+1) has to stay the same as ch(k, n) for n/(n+1) of the keys, and jump to n for the other 1/(n+1) of the keys. Here are examples of the consistent hash values for three keys, k1, k2, and k3, as num_buckets goes up: A linear time algorithm can be defined by using the formula for the probability of ch(key, j) jumping when j increases. It essentially walks across a row of this table. Given a key and number of buckets, the algorithm considers each successive bucket, j, from 1 to num_buckets1, and uses ch(key, j) to compute ch(key, j+1). At each bucket, j, it decides whether to keep ch(k, j+1) the same as ch(k, j), or to jump its value to j. In order to jump for the right fraction of keys, it uses a pseudorandom number generator with the key as its seed. To jump for 1/(j+1) of keys, it generates a uniform random number between 0.0 and 1.0, and jumps if the value is less than 1/(j+1). At the end of the loop, it has computed ch(k, num_buckets), which is the desired answer. In code: We can convert this to a logarithmic time algorithm by exploiting that ch(key, j+1) is usually unchanged as j increases, only jumping occasionally. The algorithm will only compute the destinations of jumps the j’s for which ch(key, j+1) ≠ ch(key, j). Also notice that for these j’s, ch(key, j+1) = j. To develop the algorithm, we will treat ch(key, j) as a random variable, so that we can use the notation for random variables to analyze the fractions of keys for which various propositions are true. That will lead us to a closed form expression for a pseudorandom variable whose value gives the destination of the next jump. Suppose that the algorithm is tracking the bucket numbers of the jumps for a particular key, k. And suppose that b was the destination of the last jump, that is, ch(k, b) ≠ ch(k, b+1), and ch(k, b+1) = b. Now, we want to find the next jump, the smallest j such that ch(k, j+1) ≠ ch(k, b+1), or equivalently, the largest j such that ch(k, j) = ch(k, b+1). We will make a pseudorandom variable whose value is that j. To get a probabilistic constraint on j, note that for any bucket number, i, we have j ≥ i if and only if the consistent hash hasn’t changed by i, that is, if and only if ch(k, i) = ch(k, b+1). Hence, the distribution of j must satisfy Fortunately, it is easy to compute that probability. Notice that since P( ch(k, 10) = ch(k, 11) ) is 10/11, and P( ch(k, 11) = ch(k, 12) ) is 11/12, then P( ch(k, 10) = ch(k, 12) ) is 10/11 * 11/12 = 10/12. In general, if n ≥ m, P( ch(k, n) = ch(k, m) ) = m / n. Thus for any i > b, Now, we generate a pseudorandom variable, r, (depending on k and j) that is uniformly distributed between 0 and 1. Since we want P(j ≥ i) = (b+1) / i, we set P(j ≥ i) iff r ≤ (b+1) / i. Solving the inequality for i yields P(j ≥ i) iff i ≤ (b+1) / r. Since i is a lower bound on j, j will equal the largest i for which P(j ≥ i), thus the largest i satisfying i ≤ (b+1) / r. Thus, by the definition of the floor function, j = floor((b+1) / r). Using this formula, jump consistent hash finds ch(key, num_buckets) by choosing successive jump destinations until it finds a position at or past num_buckets. It then knows that the previous jump destination is the answer. To turn this into the actual code of figure 1, we need to implement random. We want it to be fast, and yet to also to have well distributed successive values. We use a 64bit linear congruential generator; the particular multiplier we use produces random numbers that are especially well distributed in higher dimensions (i.e., when successive random values are used to form tuples). We use the key as the seed. (For keys that don’t fit into 64 bits, a 64 bit hash of the key should be used.) The congruential generator updates the seed on each iteration, and the code derives a double from the current seed. Tests show that this generator has good speed and distribution. It is worth noting that unlike the algorithm of Karger et al., jump consistent hash does not require the key to be hashed if it is already an integer. This is because jump consistent hash has an embedded pseudorandom number generator that essentially rehashes the key on every iteration. The hash is not especially good (i.e., linear congruential), but since it is applied repeatedly, additional hashing of the input key is not necessary. [1] http://arxiv.org/pdf/1406.2294v1.pdf
Notes for the programmer: ------------------------- The underlying value describing an *Element will be an int64 when possible; otherwise it will be a *big.Int. You should attempt to gain the performance boost of using int64 versions of your computations when possible. Typical code will branch into two cases: Take care not to modify the *big.Int returned by x.bigInt(), as this will modify the corresponding *Element (thus breaking our contract of immutability). Similarly, do not allow this *big.Int to escape into user-land. The implementation attempts to guarantee that there is a unique 0 and 1 *Element element, returned via the functions Zero() and One(). However this isn't completely true: following good Go standard, a nil *Element behaves identically to 0. Furthermore, there's nothing stoping a user from writing: and thus creating a new, distinct 0. Care must be taken when adding new package functions: you should use the methods x.IsZero() and x.IsOne(). It's good practice to try to reuse Zero() and One(), rather than allowing additional copies of 0 or 1 to leak out of the package. The easiest way to ensure this is to use FromInt64(n) and fromBigIntAndReuse(n) to convert your working value into a *Element suitable for returning to the user. Performance-wise, the biggest issue is big.Int.Mul(x,y), when x and y are large. Here Magma vastly outperforms big.Int. A quick search on the web shows that there exist several different algorithms for computing x * y, with different performance characteristics that depend on the size of x and y. Implementing these different algorithms, and modifying big.Int so that it uses the appropriate algorithm in each case, is a clear future task.
Package pbc provides structures for building pairing-based cryptosystems. It is a wrapper around the Pairing-Based Cryptography (PBC) Library authored by Ben Lynn (https://crypto.stanford.edu/pbc/). This wrapper provides access to all PBC functions. It supports generation of various types of elliptic curves and pairings, element initialization, I/O, and arithmetic. These features can be used to quickly build pairing-based or conventional cryptosystems. The PBC library is designed to be extremely fast. Internally, it uses GMP for arbitrary-precision arithmetic. It also includes a wide variety of optimizations that make pairing-based cryptography highly efficient. To improve performance, PBC does not perform type checking to ensure that operations actually make sense. The Go wrapper provides the ability to add compatibility checks to most operations, or to use unchecked elements to maximize performance. Since this library provides low-level access to pairing primitives, it is very easy to accidentally construct insecure systems. This library is intended to be used by cryptographers or to implement well-analyzed cryptosystems. Cryptographic pairings are defined over three mathematical groups: G1, G2, and GT, where each group is typically of the same order r. Additionally, a bilinear map e maps a pair of elements — one from G1 and another from G2 — to an element in GT. This map e has the following additional property: If G1 == G2, then a pairing is said to be symmetric. Otherwise, it is asymmetric. Pairings can be used to construct a variety of efficient cryptosystems. The PBC library currently supports 5 different types of pairings, each with configurable parameters. These types are designated alphabetically, roughly in chronological order of introduction. Type A, D, E, F, and G pairings are implemented in the library. Each type has different time and space requirements. For more information about the types, see the documentation for the corresponding generator calls, or the PBC manual page at https://crypto.stanford.edu/pbc/manual/ch05s01.html. This package must be compiled using cgo. It also requires the installation of GMP and PBC. During the build process, this package will attempt to include <gmp.h> and <pbc/pbc.h>, and then dynamically link to GMP and PBC. Most systems include a package for GMP. To install GMP in Debian / Ubuntu: For an RPM installation with YUM: For installation with Fink (http://www.finkproject.org/) on Mac OS X: For more information or to compile from source, visit https://gmplib.org/ To install the PBC library, download the appropriate files for your system from https://crypto.stanford.edu/pbc/download.html. PBC has three dependencies: the gcc compiler, flex (http://flex.sourceforge.net/), and bison (https://www.gnu.org/software/bison/). See the respective sites for installation instructions. Most distributions include packages for these libraries. For example, in Debian / Ubuntu: The PBC source can be compiled and installed using the usual GNU Build System: After installing, you may need to rebuild the search path for libraries: It is possible to install the package on Windows through the use of MinGW and MSYS. MSYS is required for installing PBC, while GMP can be installed through a package. Based on your MinGW installation, you may need to add "-I/usr/local/include" to CPPFLAGS and "-L/usr/local/lib" to LDFLAGS when building PBC. Likewise, you may need to add these options to CGO_CPPFLAGS and CGO_LDFLAGS when installing this package. This package is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. For additional details, see the COPYING and COPYING.LESSER files. This example generates a pairing and some random group elements, then applies the pairing operation. This example computes and verifies a Boneh-Lynn-Shacham signature in a simulated conversation between Alice and Bob.
Package triangle is an image processing library which converts images to computer generated art using delaunay triangulation. The package provides a command line utility supporting various customization options. Check the supported commands by typing: Using Go interfaces the API can expose the result either as raster or vector type. Example to generate triangulated image and output the result as a raster type: Example to generate triangulated image and output the result as SVG:
Package checksum computes checksums, like MD5 or SHA256, for large files
This is the official Go SDK for Oracle Cloud Infrastructure Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#installing for installation instructions. Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring for configuration instructions. The following example shows how to get started with the SDK. The example belows creates an identityClient struct with the default configuration. It then utilizes the identityClient to list availability domains and prints them out to stdout More examples can be found in the SDK Github repo: https://github.com/oracle/oci-go-sdk/tree/master/example Optional fields are represented with the `mandatory:"false"` tag on input structs. The SDK will omit all optional fields that are nil when making requests. In the case of enum-type fields, the SDK will omit fields whose value is an empty string. The SDK uses pointers for primitive types in many input structs. To aid in the construction of such structs, the SDK provides functions that return a pointer for a given value. For example: The SDK exposes functionality that allows the user to customize any http request before is sent to the service. You can do so by setting the `Interceptor` field in any of the `Client` structs. For example: The Interceptor closure gets called before the signing process, thus any changes done to the request will be properly signed and submitted to the service. The SDK exposes a stand-alone signer that can be used to signing custom requests. Related code can be found here: https://github.com/oracle/oci-go-sdk/blob/master/common/http_signer.go. The example below shows how to create a default signer. The signer also allows more granular control on the headers used for signing. For example: You can combine a custom signer with the exposed clients in the SDK. This allows you to add custom signed headers to the request. Following is an example: Bear in mind that some services have a white list of headers that it expects to be signed. Therefore, adding an arbitrary header can result in authentications errors. To see a runnable example, see https://github.com/oracle/oci-go-sdk/blob/master/example/example_identity_test.go For more information on the signing algorithm refer to: https://docs.cloud.oracle.com/Content/API/Concepts/signingrequests.htm Some operations accept or return polymorphic JSON objects. The SDK models such objects as interfaces. Further the SDK provides structs that implement such interfaces. Thus, for all operations that expect interfaces as input, pass the struct in the SDK that satisfies such interface. For example: In the case of a polymorphic response you can type assert the interface to the expected type. For example: An example of polymorphic JSON request handling can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_test.go#L63 When calling a list operation, the operation will retrieve a page of results. To retrieve more data, call the list operation again, passing in the value of the most recent response's OpcNextPage as the value of Page in the next list operation call. When there is no more data the OpcNextPage field will be nil. An example of pagination using this logic can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_pagination_test.go The SDK has a built-in logging mechanism used internally. The internal logging logic is used to record the raw http requests, responses and potential errors when (un)marshalling request and responses. Built-in logging in the SDK is controlled via the environment variable "OCI_GO_SDK_DEBUG" and its contents. The below are possible values for the "OCI_GO_SDK_DEBUG" variable 1. "info" or "i" enables all info logging messages 2. "debug" or "d" enables all debug and info logging messages 3. "verbose" or "v" or "1" enables all verbose, debug and info logging messages 4. "null" turns all logging messages off. If the value of the environment variable does not match any of the above then default logging level is "info". If the environment variable is not present then no logging messages are emitted. The default destination for logging is Stderr and if you want to output log to a file you can set via environment variable "OCI_GO_SDK_LOG_OUTPUT_MODE". The below are possible values 1. "file" or "f" enables all logging output saved to file 2. "combine" or "c" enables all logging output to both stderr and file You can also customize the log file location and name via "OCI_GO_SDK_LOG_FILE" environment variable, the value should be the path to a specific file If this environment variable is not present, the default location will be the project root path Sometimes you may need to wait until an attribute of a resource, such as an instance or a VCN, reaches a certain state. An example of this would be launching an instance and then waiting for the instance to become available, or waiting until a subnet in a VCN has been terminated. You might also want to retry the same operation again if there's network issue etc... This can be accomplished by using the RequestMetadata.RetryPolicy. You can find the examples here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_retry_test.go If you are trying to make a PUT/POST API call with binary request body, please make sure the binary request body is resettable, which means the request body should inherit Seeker interface. The OCI Go SDK defines a default retry policy that retries on the errors suitable for retries (see https://docs.oracle.com/en-us/iaas/Content/API/References/apierrors.htm), for a recommended period of time (up to 7 attempts spread out over at most approximately 1.5 minutes). This default retry policy can be created using: You can set this retry policy for a single request: or for all requests made by a client: Some resources may have to be replicated across regions and are only eventually consistent. That means the request to create, update, or delete the resource succeeded, but the resource is not available everywhere immediately. Creating, updating, or deleting any resource in the Identity service is affected by eventual consistency, and doing so may cause other operations in other services to fail until the Identity resource has been replicated. For example, the request to CreateTag in the Identity service in the home region succeeds, but immediately using that created tag in another region in a request to LaunchInstance in the Compute service may fail. If you are creating, updating, or deleting resources in the Identity service, we recommend using an eventually consistent retry policy for any service you access. The default retry policy already deals with eventual consistency. Example: This retry policy will use a different strategy if an eventually consistent change was made in the recent past (called the "eventually consistent window", currently defined to be 4 minutes after the eventually consistent change). This special retry policy for eventual consistency will: 1. make up to 9 attempts (including the initial attempt); if an attempt is successful, no more attempts will be made 2. retry at most until (a) approximately the end of the eventually consistent window or (b) the end of the default retry period of about 1.5 minutes, whichever is farther in the future; if an attempt is successful, no more attempts will be made, and the OCI Go SDK will not wait any longer 3. retry on the error codes 400-RelatedResourceNotAuthorizedOrNotFound, 404-NotAuthorizedOrNotFound, and 409-NotAuthorizedOrResourceAlreadyExists, for which the default retry policy does not retry, in addition to the errors the default retry policy retries on (see https://docs.oracle.com/en-us/iaas/Content/API/References/apierrors.htm) If there were no eventually consistent actions within the recent past, then this special retry strategy is not used. If you want a retry policy that does not handle eventual consistency in a special way, for example because you retry on all error responses, you can use DefaultRetryPolicyWithoutEventualConsistency or NewRetryPolicyWithOptions with the common.ReplaceWithValuesFromRetryPolicy(common.DefaultRetryPolicyWithoutEventualConsistency()) option: The NewRetryPolicy function also creates a retry policy without eventual consistency. The GO SDK uses the net/http package to make calls to OCI services. If your environment requires you to use a proxy server for outgoing HTTP requests then you can set this up in the following ways: 1. Configuring environment variable as described here https://golang.org/pkg/net/http/#ProxyFromEnvironment 2. Modifying the underlying Transport struct for a service client In order to modify the underlying Transport struct in HttpClient, you can do something similar to (sample code for audit service client): The Object Storage service supports multipart uploads to make large object uploads easier by splitting the large object into parts. The Go SDK supports raw multipart upload operations for advanced use cases, as well as a higher level upload class that uses the multipart upload APIs. For links to the APIs used for multipart upload operations, see Managing Multipart Uploads (https://docs.cloud.oracle.com/iaas/Content/Object/Tasks/usingmultipartuploads.htm). Higher level multipart uploads are implemented using the UploadManager, which will: split a large object into parts for you, upload the parts in parallel, and then recombine and commit the parts as a single object in storage. This code sample shows how to use the UploadManager to automatically split an object into parts for upload to simplify interaction with the Object Storage service: https://github.com/oracle/oci-go-sdk/blob/master/example/example_objectstorage_test.go Some response fields are enum-typed. In the future, individual services may return values not covered by existing enums for that field. To address this possibility, every enum-type response field is a modeled as a type that supports any string. Thus if a service returns a value that is not recognized by your version of the SDK, then the response field will be set to this value. When individual services return a polymorphic JSON response not available as a concrete struct, the SDK will return an implementation that only satisfies the interface modeling the polymorphic JSON response. If you are using a version of the SDK released prior to the announcement of a new region, you may need to use a workaround to reach it, depending on whether the region is in the oraclecloud.com realm. A region is a localized geographic area. For more information on regions and how to identify them, see Regions and Availability Domains(https://docs.cloud.oracle.com/iaas/Content/General/Concepts/regions.htm). A realm is a set of regions that share entities. You can identify your realm by looking at the domain name at the end of the network address. For example, the realm for xyz.abc.123.oraclecloud.com is oraclecloud.com. oraclecloud.com Realm: For regions in the oraclecloud.com realm, even if common.Region does not contain the new region, the forward compatibility of the SDK can automatically handle it. You can pass new region names just as you would pass ones that are already defined. For more information on passing region names in the configuration, see Configuring (https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring). For details on common.Region, see (https://github.com/oracle/oci-go-sdk/blob/master/common/common.go). Other Realms: For regions in realms other than oraclecloud.com, you can use the following workarounds to reach new regions with earlier versions of the SDK. NOTE: Be sure to supply the appropriate endpoints for your region. You can overwrite the target host with client.Host: If you are authenticating via instance principals, you can set the authentication endpoint in an environment variable: Got a fix for a bug, or a new feature you'd like to contribute? The SDK is open source and accepting pull requests on GitHub https://github.com/oracle/oci-go-sdk Licensing information available at: https://github.com/oracle/oci-go-sdk/blob/master/LICENSE.txt To be notified when a new version of the Go SDK is released, subscribe to the following feed: https://github.com/oracle/oci-go-sdk/releases.atom Please refer to this link: https://github.com/oracle/oci-go-sdk#help
Package ql implements a pure Go embedded SQL database engine. Builder results available at QL is a member of the SQL family of languages. It is less complex and less powerful than SQL (whichever specification SQL is considered to be). 2020-12-10: sql/database driver now supports url parameter removeemptywal=N which has the same semantics as passing RemoveEmptyWAL = N != 0 to OpenFile options. 2020-11-09: Add IF NOT EXISTS support for the INSERT INTO statement. Add IsDuplicateUniqueIndexError function. 2018-11-04: Back end file format V2 is now released. To use the new format for newly created databases set the FileFormat field in *Options passed to OpenFile to value 2 or use the driver named "ql2" instead of "ql". - Both the old and new driver will properly open and use, read and write the old (V1) or new file (V2) format of an existing database. - V1 format has a record size limit of ~64 kB. V2 format record size limit is math.MaxInt32. - V1 format uncommitted transaction size is limited by memory resources. V2 format uncommitted transaction is limited by free disk space. - A direct consequence of the previous is that small transactions perform better using V1 format and big transactions perform better using V2 format. - V2 format uses substantially less memory. 2018-08-02: Release v1.2.0 adds initial support for Go modules. 2017-01-10: Release v1.1.0 fixes some bugs and adds a configurable WAL headroom. 2016-07-29: Release v1.0.6 enables alternatively using = instead of == for equality operation. 2016-07-11: Release v1.0.5 undoes vendoring of lldb. QL now uses stable lldb (modernc.org/lldb). 2016-07-06: Release v1.0.4 fixes a panic when closing the WAL file. 2016-04-03: Release v1.0.3 fixes a data race. 2016-03-23: Release v1.0.2 vendors gitlab.com/cznic/exp/lldb and github.com/camlistore/go4/lock. 2016-03-17: Release v1.0.1 adjusts for latest goyacc. Parser error messages are improved and changed, but their exact form is not considered a API change. 2016-03-05: The current version has been tagged v1.0.0. 2015-06-15: To improve compatibility with other SQL implementations, the count built-in aggregate function now accepts * as its argument. 2015-05-29: The execution planner was rewritten from scratch. It should use indices in all places where they were used before plus in some additional situations. It is possible to investigate the plan using the newly added EXPLAIN statement. The QL tool is handy for such analysis. If the planner would have used an index, but no such exists, the plan includes hints in form of copy/paste ready CREATE INDEX statements. The planner is still quite simple and a lot of work on it is yet ahead. You can help this process by filling an issue with a schema and query which fails to use an index or indices when it should, in your opinion. Bonus points for including output of `ql 'explain <query>'`. 2015-05-09: The grammar of the CREATE INDEX statement now accepts an expression list instead of a single expression, which was further limited to just a column name or the built-in id(). As a side effect, composite indices are now functional. However, the values in the expression-list style index are not yet used by other statements or the statement/query planner. The composite index is useful while having UNIQUE clause to check for semantically duplicate rows before they get added to the table or when such a row is mutated using the UPDATE statement and the expression-list style index tuple of the row is thus recomputed. 2015-05-02: The Schema field of table __Table now correctly reflects any column constraints and/or defaults. Also, the (*DB).Info method now has that information provided in new ColumInfo fields NotNull, Constraint and Default. 2015-04-20: Added support for {LEFT,RIGHT,FULL} [OUTER] JOIN. 2015-04-18: Column definitions can now have constraints and defaults. Details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. 2015-03-06: New built-in functions formatFloat and formatInt. Thanks urandom! (https://github.com/urandom) 2015-02-16: IN predicate now accepts a SELECT statement. See the updated "Predicates" section. 2015-01-17: Logical operators || and && have now alternative spellings: OR and AND (case insensitive). AND was a keyword before, but OR is a new one. This can possibly break existing queries. For the record, it's a good idea to not use any name appearing in, for example, [7] in your queries as the list of QL's keywords may expand for gaining better compatibility with existing SQL "standards". 2015-01-12: ACID guarantees were tightened at the cost of performance in some cases. The write collecting window mechanism, a formerly used implementation detail, was removed. Inserting rows one by one in a transaction is now slow. I mean very slow. Try to avoid inserting single rows in a transaction. Instead, whenever possible, perform batch updates of tens to, say thousands of rows in a single transaction. See also: http://www.sqlite.org/faq.html#q19, the discussed synchronization principles involved are the same as for QL, modulo minor details. Note: A side effect is that closing a DB before exiting an application, both for the Go API and through database/sql driver, is no more required, strictly speaking. Beware that exiting an application while there is an open (uncommitted) transaction in progress means losing the transaction data. However, the DB will not become corrupted because of not closing it. Nor that was the case before, but formerly failing to close a DB could have resulted in losing the data of the last transaction. 2014-09-21: id() now optionally accepts a single argument - a table name. 2014-09-01: Added the DB.Flush() method and the LIKE pattern matching predicate. 2014-08-08: The built in functions max and min now accept also time values. Thanks opennota! (https://github.com/opennota) 2014-06-05: RecordSet interface extended by new methods FirstRow and Rows. 2014-06-02: Indices on id() are now used by SELECT statements. 2014-05-07: Introduction of Marshal, Schema, Unmarshal. 2014-04-15: Added optional IF NOT EXISTS clause to CREATE INDEX and optional IF EXISTS clause to DROP INDEX. 2014-04-12: The column Unique in the virtual table __Index was renamed to IsUnique because the old name is a keyword. Unfortunately, this is a breaking change, sorry. 2014-04-11: Introduction of LIMIT, OFFSET. 2014-04-10: Introduction of query rewriting. 2014-04-07: Introduction of indices. QL imports zappy[8], a block-based compressor, which speeds up its performance by using a C version of the compression/decompression algorithms. If a CGO-free (pure Go) version of QL, or an app using QL, is required, please include 'purego' in the -tags option of go {build,get,install}. For example: If zappy was installed before installing QL, it might be necessary to rebuild zappy first (or rebuild QL with all its dependencies using the -a option): The syntax is specified using Extended Backus-Naur Form (EBNF) Lower-case production names are used to identify lexical tokens. Non-terminals are in CamelCase. Lexical tokens are enclosed in double quotes "" or back quotes “. The form a … b represents the set of characters from a through b as alternatives. The horizontal ellipsis … is also used elsewhere in the spec to informally denote various enumerations or code snippets that are not further specified. QL source code is Unicode text encoded in UTF-8. The text is not canonicalized, so a single accented code point is distinct from the same character constructed from combining an accent and a letter; those are treated as two code points. For simplicity, this document will use the unqualified term character to refer to a Unicode code point in the source text. Each code point is distinct; for instance, upper and lower case letters are different characters. Implementation restriction: For compatibility with other tools, the parser may disallow the NUL character (U+0000) in the statement. Implementation restriction: A byte order mark is disallowed anywhere in QL statements. The following terms are used to denote specific character classes The underscore character _ (U+005F) is considered a letter. Lexical elements are comments, tokens, identifiers, keywords, operators and delimiters, integer, floating-point, imaginary, rune and string literals and QL parameters. Line comments start with the character sequence // or -- and stop at the end of the line. A line comment acts like a space. General comments start with the character sequence /* and continue through the character sequence */. A general comment acts like a space. Comments do not nest. Tokens form the vocabulary of QL. There are four classes: identifiers, keywords, operators and delimiters, and literals. White space, formed from spaces (U+0020), horizontal tabs (U+0009), carriage returns (U+000D), and newlines (U+000A), is ignored except as it separates tokens that would otherwise combine into a single token. The formal grammar uses semicolons ";" as separators of QL statements. A single QL statement or the last QL statement in a list of statements can have an optional semicolon terminator. (Actually a separator from the following empty statement.) Identifiers name entities such as tables or record set columns. There are two kinds of identifiers, normal idententifiers and quoted identifiers. An normal identifier is a sequence of one or more letters and digits. The first character in an identifier must be a letter. For example A quoted identifier is a string of any charaters between guillmets «». Quoted identifiers allow QL key words or phrases with spaces to be used as identifiers. The guillemets were chosen because QL already uses double quotes, single quotes, and backticks for other quoting purposes. «TRANSACTION» «duration» «lovely stories» No identifiers are predeclared, however note that no keyword can be used as a normal identifier. Identifiers starting with two underscores are used for meta data virtual tables names. For forward compatibility, users should generally avoid using any identifiers starting with two underscores. For example The following keywords are reserved and may not be used as identifiers. Keywords are not case sensitive. The following character sequences represent operators, delimiters, and other special tokens Operators consisting of more than one character are referred to by names in the rest of the documentation An integer literal is a sequence of digits representing an integer constant. An optional prefix sets a non-decimal base: 0 for octal, 0x or 0X for hexadecimal. In hexadecimal literals, letters a-f and A-F represent values 10 through 15. For example A floating-point literal is a decimal representation of a floating-point constant. It has an integer part, a decimal point, a fractional part, and an exponent part. The integer and fractional part comprise decimal digits; the exponent part is an e or E followed by an optionally signed decimal exponent. One of the integer part or the fractional part may be elided; one of the decimal point or the exponent may be elided. For example An imaginary literal is a decimal representation of the imaginary part of a complex constant. It consists of a floating-point literal or decimal integer followed by the lower-case letter i. For example A rune literal represents a rune constant, an integer value identifying a Unicode code point. A rune literal is expressed as one or more characters enclosed in single quotes. Within the quotes, any character may appear except single quote and newline. A single quoted character represents the Unicode value of the character itself, while multi-character sequences beginning with a backslash encode values in various formats. The simplest form represents the single character within the quotes; since QL statements are Unicode characters encoded in UTF-8, multiple UTF-8-encoded bytes may represent a single integer value. For instance, the literal 'a' holds a single byte representing a literal a, Unicode U+0061, value 0x61, while 'ä' holds two bytes (0xc3 0xa4) representing a literal a-dieresis, U+00E4, value 0xe4. Several backslash escapes allow arbitrary values to be encoded as ASCII text. There are four ways to represent the integer value as a numeric constant: \x followed by exactly two hexadecimal digits; \u followed by exactly four hexadecimal digits; \U followed by exactly eight hexadecimal digits, and a plain backslash \ followed by exactly three octal digits. In each case the value of the literal is the value represented by the digits in the corresponding base. Although these representations all result in an integer, they have different valid ranges. Octal escapes must represent a value between 0 and 255 inclusive. Hexadecimal escapes satisfy this condition by construction. The escapes \u and \U represent Unicode code points so within them some values are illegal, in particular those above 0x10FFFF and surrogate halves. After a backslash, certain single-character escapes represent special values All other sequences starting with a backslash are illegal inside rune literals. For example A string literal represents a string constant obtained from concatenating a sequence of characters. There are two forms: raw string literals and interpreted string literals. Raw string literals are character sequences between back quotes “. Within the quotes, any character is legal except back quote. The value of a raw string literal is the string composed of the uninterpreted (implicitly UTF-8-encoded) characters between the quotes; in particular, backslashes have no special meaning and the string may contain newlines. Carriage returns inside raw string literals are discarded from the raw string value. Interpreted string literals are character sequences between double quotes "". The text between the quotes, which may not contain newlines, forms the value of the literal, with backslash escapes interpreted as they are in rune literals (except that \' is illegal and \" is legal), with the same restrictions. The three-digit octal (\nnn) and two-digit hexadecimal (\xnn) escapes represent individual bytes of the resulting string; all other escapes represent the (possibly multi-byte) UTF-8 encoding of individual characters. Thus inside a string literal \377 and \xFF represent a single byte of value 0xFF=255, while ÿ, \u00FF, \U000000FF and \xc3\xbf represent the two bytes 0xc3 0xbf of the UTF-8 encoding of character U+00FF. For example These examples all represent the same string If the statement source represents a character as two code points, such as a combining form involving an accent and a letter, the result will be an error if placed in a rune literal (it is not a single code point), and will appear as two code points if placed in a string literal. Literals are assigned their values from the respective text representation at "compile" (parse) time. QL parameters provide the same functionality as literals, but their value is assigned at execution time from an expression list passed to DB.Run or DB.Execute. Using '?' or '$' is completely equivalent. For example Keywords 'false' and 'true' (not case sensitive) represent the two possible constant values of type bool (also not case sensitive). Keyword 'NULL' (not case sensitive) represents an untyped constant which is assignable to any type. NULL is distinct from any other value of any type. A type determines the set of values and operations specific to values of that type. A type is specified by a type name. Named instances of the boolean, numeric, and string types are keywords. The names are not case sensitive. Note: The blob type is exchanged between the back end and the API as []byte. On 32 bit platforms this limits the size which the implementation can handle to 2G. A boolean type represents the set of Boolean truth values denoted by the predeclared constants true and false. The predeclared boolean type is bool. A duration type represents the elapsed time between two instants as an int64 nanosecond count. The representation limits the largest representable duration to approximately 290 years. A numeric type represents sets of integer or floating-point values. The predeclared architecture-independent numeric types are The value of an n-bit integer is n bits wide and represented using two's complement arithmetic. Conversions are required when different numeric types are mixed in an expression or assignment. A string type represents the set of string values. A string value is a (possibly empty) sequence of bytes. The case insensitive keyword for the string type is 'string'. The length of a string (its size in bytes) can be discovered using the built-in function len. A time type represents an instant in time with nanosecond precision. Each time has associated with it a location, consulted when computing the presentation form of the time. The following functions are implicitly declared An expression specifies the computation of a value by applying operators and functions to operands. Operands denote the elementary values in an expression. An operand may be a literal, a (possibly qualified) identifier denoting a constant or a function or a table/record set column, or a parenthesized expression. A qualified identifier is an identifier qualified with a table/record set name prefix. For example Primary expression are the operands for unary and binary expressions. For example A primary expression of the form denotes the element of a string indexed by x. Its type is byte. The value x is called the index. The following rules apply - The index x must be of integer type except bigint or duration; it is in range if 0 <= x < len(s), otherwise it is out of range. - A constant index must be non-negative and representable by a value of type int. - A constant index must be in range if the string a is a literal. - If x is out of range at run time, a run-time error occurs. - s[x] is the byte at index x and the type of s[x] is byte. If s is NULL or x is NULL then the result is NULL. Otherwise s[x] is illegal. For a string, the primary expression constructs a substring. The indices low and high select which elements appear in the result. The result has indices starting at 0 and length equal to high - low. For convenience, any of the indices may be omitted. A missing low index defaults to zero; a missing high index defaults to the length of the sliced operand The indices low and high are in range if 0 <= low <= high <= len(a), otherwise they are out of range. A constant index must be non-negative and representable by a value of type int. If both indices are constant, they must satisfy low <= high. If the indices are out of range at run time, a run-time error occurs. Integer values of type bigint or duration cannot be used as indices. If s is NULL the result is NULL. If low or high is not omitted and is NULL then the result is NULL. Given an identifier f denoting a predeclared function, calls f with arguments a1, a2, … an. Arguments are evaluated before the function is called. The type of the expression is the result type of f. In a function call, the function value and arguments are evaluated in the usual order. After they are evaluated, the parameters of the call are passed by value to the function and the called function begins execution. The return value of the function is passed by value when the function returns. Calling an undefined function causes a compile-time error. Operators combine operands into expressions. Comparisons are discussed elsewhere. For other binary operators, the operand types must be identical unless the operation involves shifts or untyped constants. For operations involving constants only, see the section on constant expressions. Except for shift operations, if one operand is an untyped constant and the other operand is not, the constant is converted to the type of the other operand. The right operand in a shift expression must have unsigned integer type or be an untyped constant that can be converted to unsigned integer type. If the left operand of a non-constant shift expression is an untyped constant, the type of the constant is what it would be if the shift expression were replaced by its left operand alone. Expressions of the form yield a boolean value true if expr2, a regular expression, matches expr1 (see also [6]). Both expression must be of type string. If any one of the expressions is NULL the result is NULL. Predicates are special form expressions having a boolean result type. Expressions of the form are equivalent, including NULL handling, to The types of involved expressions must be comparable as defined in "Comparison operators". Another form of the IN predicate creates the expression list from a result of a SelectStmt. The SelectStmt must select only one column. The produced expression list is resource limited by the memory available to the process. NULL values produced by the SelectStmt are ignored, but if all records of the SelectStmt are NULL the predicate yields NULL. The select statement is evaluated only once. If the type of expr is not the same as the type of the field returned by the SelectStmt then the set operation yields false. The type of the column returned by the SelectStmt must be one of the simple (non blob-like) types: Expressions of the form are equivalent, including NULL handling, to The types of involved expressions must be ordered as defined in "Comparison operators". Expressions of the form yield a boolean value true if expr does not have a specific type (case A) or if expr has a specific type (case B). In other cases the result is a boolean value false. Unary operators have the highest precedence. There are five precedence levels for binary operators. Multiplication operators bind strongest, followed by addition operators, comparison operators, && (logical AND), and finally || (logical OR) Binary operators of the same precedence associate from left to right. For instance, x / y * z is the same as (x / y) * z. Note that the operator precedence is reflected explicitly by the grammar. Arithmetic operators apply to numeric values and yield a result of the same type as the first operand. The four standard arithmetic operators (+, -, *, /) apply to integer, rational, floating-point, and complex types; + also applies to strings; +,- also applies to times. All other arithmetic operators apply to integers only. sum integers, rationals, floats, complex values, strings difference integers, rationals, floats, complex values, times product integers, rationals, floats, complex values / quotient integers, rationals, floats, complex values % remainder integers & bitwise AND integers | bitwise OR integers ^ bitwise XOR integers &^ bit clear (AND NOT) integers << left shift integer << unsigned integer >> right shift integer >> unsigned integer Strings can be concatenated using the + operator String addition creates a new string by concatenating the operands. A value of type duration can be added to or subtracted from a value of type time. Times can subtracted from each other producing a value of type duration. For two integer values x and y, the integer quotient q = x / y and remainder r = x % y satisfy the following relationships with x / y truncated towards zero ("truncated division"). As an exception to this rule, if the dividend x is the most negative value for the int type of x, the quotient q = x / -1 is equal to x (and r = 0). If the divisor is a constant expression, it must not be zero. If the divisor is zero at run time, a run-time error occurs. If the dividend is non-negative and the divisor is a constant power of 2, the division may be replaced by a right shift, and computing the remainder may be replaced by a bitwise AND operation The shift operators shift the left operand by the shift count specified by the right operand. They implement arithmetic shifts if the left operand is a signed integer and logical shifts if it is an unsigned integer. There is no upper limit on the shift count. Shifts behave as if the left operand is shifted n times by 1 for a shift count of n. As a result, x << 1 is the same as x*2 and x >> 1 is the same as x/2 but truncated towards negative infinity. For integer operands, the unary operators +, -, and ^ are defined as follows For floating-point and complex numbers, +x is the same as x, while -x is the negation of x. The result of a floating-point or complex division by zero is not specified beyond the IEEE-754 standard; whether a run-time error occurs is implementation-specific. Whenever any operand of any arithmetic operation, unary or binary, is NULL, as well as in the case of the string concatenating operation, the result is NULL. For unsigned integer values, the operations +, -, *, and << are computed modulo 2n, where n is the bit width of the unsigned integer's type. Loosely speaking, these unsigned integer operations discard high bits upon overflow, and expressions may rely on “wrap around”. For signed integers with a finite bit width, the operations +, -, *, and << may legally overflow and the resulting value exists and is deterministically defined by the signed integer representation, the operation, and its operands. No exception is raised as a result of overflow. An evaluator may not optimize an expression under the assumption that overflow does not occur. For instance, it may not assume that x < x + 1 is always true. Integers of type bigint and rationals do not overflow but their handling is limited by the memory resources available to the program. Comparison operators compare two operands and yield a boolean value. In any comparison, the first operand must be of same type as is the second operand, or vice versa. The equality operators == and != apply to operands that are comparable. The ordering operators <, <=, >, and >= apply to operands that are ordered. These terms and the result of the comparisons are defined as follows - Boolean values are comparable. Two boolean values are equal if they are either both true or both false. - Complex values are comparable. Two complex values u and v are equal if both real(u) == real(v) and imag(u) == imag(v). - Integer values are comparable and ordered, in the usual way. Note that durations are integers. - Floating point values are comparable and ordered, as defined by the IEEE-754 standard. - Rational values are comparable and ordered, in the usual way. - String and Blob values are comparable and ordered, lexically byte-wise. - Time values are comparable and ordered. Whenever any operand of any comparison operation is NULL, the result is NULL. Note that slices are always of type string. Logical operators apply to boolean values and yield a boolean result. The right operand is evaluated conditionally. The truth tables for logical operations with NULL values Conversions are expressions of the form T(x) where T is a type and x is an expression that can be converted to type T. A constant value x can be converted to type T in any of these cases: - x is representable by a value of type T. - x is a floating-point constant, T is a floating-point type, and x is representable by a value of type T after rounding using IEEE 754 round-to-even rules. The constant T(x) is the rounded value. - x is an integer constant and T is a string type. The same rule as for non-constant x applies in this case. Converting a constant yields a typed constant as result. A non-constant value x can be converted to type T in any of these cases: - x has type T. - x's type and T are both integer or floating point types. - x's type and T are both complex types. - x is an integer, except bigint or duration, and T is a string type. Specific rules apply to (non-constant) conversions between numeric types or to and from a string type. These conversions may change the representation of x and incur a run-time cost. All other conversions only change the type but not the representation of x. A conversion of NULL to any type yields NULL. For the conversion of non-constant numeric values, the following rules apply 1. When converting between integer types, if the value is a signed integer, it is sign extended to implicit infinite precision; otherwise it is zero extended. It is then truncated to fit in the result type's size. For example, if v == uint16(0x10F0), then uint32(int8(v)) == 0xFFFFFFF0. The conversion always yields a valid value; there is no indication of overflow. 2. When converting a floating-point number to an integer, the fraction is discarded (truncation towards zero). 3. When converting an integer or floating-point number to a floating-point type, or a complex number to another complex type, the result value is rounded to the precision specified by the destination type. For instance, the value of a variable x of type float32 may be stored using additional precision beyond that of an IEEE-754 32-bit number, but float32(x) represents the result of rounding x's value to 32-bit precision. Similarly, x + 0.1 may use more than 32 bits of precision, but float32(x + 0.1) does not. In all non-constant conversions involving floating-point or complex values, if the result type cannot represent the value the conversion succeeds but the result value is implementation-dependent. 1. Converting a signed or unsigned integer value to a string type yields a string containing the UTF-8 representation of the integer. Values outside the range of valid Unicode code points are converted to "\uFFFD". 2. Converting a blob to a string type yields a string whose successive bytes are the elements of the blob. 3. Converting a value of a string type to a blob yields a blob whose successive elements are the bytes of the string. 4. Converting a value of a bigint type to a string yields a string containing the decimal decimal representation of the integer. 5. Converting a value of a string type to a bigint yields a bigint value containing the integer represented by the string value. A prefix of “0x” or “0X” selects base 16; the “0” prefix selects base 8, and a “0b” or “0B” prefix selects base 2. Otherwise the value is interpreted in base 10. An error occurs if the string value is not in any valid format. 6. Converting a value of a rational type to a string yields a string containing the decimal decimal representation of the rational in the form "a/b" (even if b == 1). 7. Converting a value of a string type to a bigrat yields a bigrat value containing the rational represented by the string value. The string can be given as a fraction "a/b" or as a floating-point number optionally followed by an exponent. An error occurs if the string value is not in any valid format. 8. Converting a value of a duration type to a string returns a string representing the duration in the form "72h3m0.5s". Leading zero units are omitted. As a special case, durations less than one second format using a smaller unit (milli-, micro-, or nanoseconds) to ensure that the leading digit is non-zero. The zero duration formats as 0, with no unit. 9. Converting a string value to a duration yields a duration represented by the string. A duration string is a possibly signed sequence of decimal numbers, each with optional fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m". Valid time units are "ns", "us" (or "µs"), "ms", "s", "m", "h". 10. Converting a time value to a string returns the time formatted using the format string When evaluating the operands of an expression or of function calls, operations are evaluated in lexical left-to-right order. For example, in the evaluation of the function calls and evaluation of c happen in the order h(), i(), j(), c. Floating-point operations within a single expression are evaluated according to the associativity of the operators. Explicit parentheses affect the evaluation by overriding the default associativity. In the expression x + (y + z) the addition y + z is performed before adding x. Statements control execution. The empty statement does nothing. Alter table statements modify existing tables. With the ADD clause it adds a new column to the table. The column must not exist. With the DROP clause it removes an existing column from a table. The column must exist and it must be not the only (last) column of the table. IOW, there cannot be a table with no columns. For example When adding a column to a table with existing data, the constraint clause of the ColumnDef cannot be used. Adding a constrained column to an empty table is fine. Begin transactions statements introduce a new transaction level. Every transaction level must be eventually balanced by exactly one of COMMIT or ROLLBACK statements. Note that when a transaction is roll-backed because of a statement failure then no explicit balancing of the respective BEGIN TRANSACTION is statement is required nor permitted. Failure to properly balance any opened transaction level may cause dead locks and/or lose of data updated in the uppermost opened but never properly closed transaction level. For example A database cannot be updated (mutated) outside of a transaction. Statements requiring a transaction A database is effectively read only outside of a transaction. Statements not requiring a transaction The commit statement closes the innermost transaction nesting level. If that's the outermost level then the updates to the DB made by the transaction are atomically made persistent. For example Create index statements create new indices. Index is a named projection of ordered values of a table column to the respective records. As a special case the id() of the record can be indexed. Index name must not be the same as any of the existing tables and it also cannot be the same as of any column name of the table the index is on. For example Now certain SELECT statements may use the indices to speed up joins and/or to speed up record set filtering when the WHERE clause is used; or the indices might be used to improve the performance when the ORDER BY clause is present. The UNIQUE modifier requires the indexed values tuple to be index-wise unique or have all values NULL. The optional IF NOT EXISTS clause makes the statement a no operation if the index already exists. A simple index consists of only one expression which must be either a column name or the built-in id(). A more complex and more general index is one that consists of more than one expression or its single expression does not qualify as a simple index. In this case the type of all expressions in the list must be one of the non blob-like types. Note: Blob-like types are blob, bigint, bigrat, time and duration. Create table statements create new tables. A column definition declares the column name and type. Table names and column names are case sensitive. Neither a table or an index of the same name may exist in the DB. For example The optional IF NOT EXISTS clause makes the statement a no operation if the table already exists. The optional constraint clause has two forms. The first one is found in many SQL dialects. This form prevents the data in column DepartmentName to be NULL. The second form allows an arbitrary boolean expression to be used to validate the column. If the value of the expression is true then the validation succeeded. If the value of the expression is false or NULL then the validation fails. If the value of the expression is not of type bool an error occurs. The optional DEFAULT clause is an expression which, if present, is substituted instead of a NULL value when the colum is assigned a value. Note that the constraint and/or default expressions may refer to other columns by name: When a table row is inserted by the INSERT INTO statement or when a table row is updated by the UPDATE statement, the order of operations is as follows: 1. The new values of the affected columns are set and the values of all the row columns become the named values which can be referred to in default expressions evaluated in step 2. 2. If any row column value is NULL and the DEFAULT clause is present in the column's definition, the default expression is evaluated and its value is set as the respective column value. 3. The values, potentially updated, of row columns become the named values which can be referred to in constraint expressions evaluated during step 4. 4. All row columns which definition has the constraint clause present will have that constraint checked. If any constraint violation is detected, the overall operation fails and no changes to the table are made. Delete from statements remove rows from a table, which must exist. For example If the WHERE clause is not present then all rows are removed and the statement is equivalent to the TRUNCATE TABLE statement. Drop index statements remove indices from the DB. The index must exist. For example The optional IF EXISTS clause makes the statement a no operation if the index does not exist. Drop table statements remove tables from the DB. The table must exist. For example The optional IF EXISTS clause makes the statement a no operation if the table does not exist. Insert into statements insert new rows into tables. New rows come from literal data, if using the VALUES clause, or are a result of select statement. In the later case the select statement is fully evaluated before the insertion of any rows is performed, allowing to insert values calculated from the same table rows are to be inserted into. If the ColumnNameList part is omitted then the number of values inserted in the row must be the same as are columns in the table. If the ColumnNameList part is present then the number of values per row must be same as the same number of column names. All other columns of the record are set to NULL. The type of the value assigned to a column must be the same as is the column's type or the value must be NULL. If there exists an unique index that would make the insert statement fail, the optional IF NOT EXISTS turns the insert statement in such case into a no-op. For example If any of the columns of the table were defined using the optional constraints clause or the optional defaults clause then those are processed on a per row basis. The details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. Explain statement produces a recordset consisting of lines of text which describe the execution plan of a statement, if any. For example, the QL tool treats the explain statement specially and outputs the joined lines: The explanation may aid in uderstanding how a statement/query would be executed and if indices are used as expected - or which indices may possibly improve the statement performance. The create index statements above were directly copy/pasted in the terminal from the suggestions provided by the filter recordset pipeline part returned by the explain statement. If the statement has nothing special in its plan, the result is the original statement. To get an explanation of the select statement of the IN predicate, use the EXPLAIN statement with that particular select statement. The rollback statement closes the innermost transaction nesting level discarding any updates to the DB made by it. If that's the outermost level then the effects on the DB are as if the transaction never happened. For example The (temporary) record set from the last statement is returned and can be processed by the client. In this case the rollback is the same as 'DROP TABLE tmp;' but it can be a more complex operation. Select from statements produce recordsets. The optional DISTINCT modifier ensures all rows in the result recordset are unique. Either all of the resulting fields are returned ('*') or only those named in FieldList. RecordSetList is a list of table names or parenthesized select statements, optionally (re)named using the AS clause. The result can be filtered using a WhereClause and orderd by the OrderBy clause. For example If Recordset is a nested, parenthesized SelectStmt then it must be given a name using the AS clause if its field are to be accessible in expressions. A field is an named expression. Identifiers, not used as a type in conversion or a function name in the Call clause, denote names of (other) fields, values of which should be used in the expression. The expression can be named using the AS clause. If the AS clause is not present and the expression consists solely of a field name, then that field name is used as the name of the resulting field. Otherwise the field is unnamed. For example The SELECT statement can optionally enumerate the desired/resulting fields in a list. No two identical field names can appear in the list. When more than one record set is used in the FROM clause record set list, the result record set field names are rewritten to be qualified using the record set names. If a particular record set doesn't have a name, its respective fields became unnamed. The optional JOIN clause, for example is mostly equal to except that the rows from a which, when they appear in the cross join, never made expr to evaluate to true, are combined with a virtual row from b, containing all nulls, and added to the result set. For the RIGHT JOIN variant the discussed rules are used for rows from b not satisfying expr == true and the virtual, all-null row "comes" from a. The FULL JOIN adds the respective rows which would be otherwise provided by the separate executions of the LEFT JOIN and RIGHT JOIN variants. For more thorough OUTER JOIN discussion please see the Wikipedia article at [10]. Resultins rows of a SELECT statement can be optionally ordered by the ORDER BY clause. Collating proceeds by considering the expressions in the expression list left to right until a collating order is determined. Any possibly remaining expressions are not evaluated. All of the expression values must yield an ordered type or NULL. Ordered types are defined in "Comparison operators". Collating of elements having a NULL value is different compared to what the comparison operators yield in expression evaluation (NULL result instead of a boolean value). Below, T denotes a non NULL value of any QL type. NULL collates before any non NULL value (is considered smaller than T). Two NULLs have no collating order (are considered equal). The WHERE clause restricts records considered by some statements, like SELECT FROM, DELETE FROM, or UPDATE. It is an error if the expression evaluates to a non null value of non bool type. Another form of the WHERE clause is an existence predicate of a parenthesized select statement. The EXISTS form evaluates to true if the parenthesized SELECT statement produces a non empty record set. The NOT EXISTS form evaluates to true if the parenthesized SELECT statement produces an empty record set. The parenthesized SELECT statement is evaluated only once (TODO issue #159). The GROUP BY clause is used to project rows having common values into a smaller set of rows. For example Using the GROUP BY without any aggregate functions in the selected fields is in certain cases equal to using the DISTINCT modifier. The last two examples above produce the same resultsets. The optional OFFSET clause allows to ignore first N records. For example The above will produce only rows 11, 12, ... of the record set, if they exist. The value of the expression must a non negative integer, but not bigint or duration. The optional LIMIT clause allows to ignore all but first N records. For example The above will return at most the first 10 records of the record set. The value of the expression must a non negative integer, but not bigint or duration. The LIMIT and OFFSET clauses can be combined. For example Considering table t has, say 10 records, the above will produce only records 4 - 8. After returning record #8, no more result rows/records are computed. 1. The FROM clause is evaluated, producing a Cartesian product of its source record sets (tables or nested SELECT statements). 2. If present, the JOIN cluase is evaluated on the result set of the previous evaluation and the recordset specified by the JOIN clause. (... JOIN Recordset ON ...) 3. If present, the WHERE clause is evaluated on the result set of the previous evaluation. 4. If present, the GROUP BY clause is evaluated on the result set of the previous evaluation(s). 5. The SELECT field expressions are evaluated on the result set of the previous evaluation(s). 6. If present, the DISTINCT modifier is evaluated on the result set of the previous evaluation(s). 7. If present, the ORDER BY clause is evaluated on the result set of the previous evaluation(s). 8. If present, the OFFSET clause is evaluated on the result set of the previous evaluation(s). The offset expression is evaluated once for the first record produced by the previous evaluations. 9. If present, the LIMIT clause is evaluated on the result set of the previous evaluation(s). The limit expression is evaluated once for the first record produced by the previous evaluations. Truncate table statements remove all records from a table. The table must exist. For example Update statements change values of fields in rows of a table. For example Note: The SET clause is optional. If any of the columns of the table were defined using the optional constraints clause or the optional defaults clause then those are processed on a per row basis. The details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. To allow to query for DB meta data, there exist specially named tables, some of them being virtual. Note: Virtual system tables may have fake table-wise unique but meaningless and unstable record IDs. Do not apply the built-in id() to any system table. The table __Table lists all tables in the DB. The schema is The Schema column returns the statement to (re)create table Name. This table is virtual. The table __Colum lists all columns of all tables in the DB. The schema is The Ordinal column defines the 1-based index of the column in the record. This table is virtual. The table __Colum2 lists all columns of all tables in the DB which have the constraint NOT NULL or which have a constraint expression defined or which have a default expression defined. The schema is It's possible to obtain a consolidated recordset for all properties of all DB columns using The Name column is the column name in TableName. The table __Index lists all indices in the DB. The schema is The IsUnique columns reflects if the index was created using the optional UNIQUE clause. This table is virtual. Built-in functions are predeclared. The built-in aggregate function avg returns the average of values of an expression. Avg ignores NULL values, but returns NULL if all values of a column are NULL or if avg is applied to an empty record set. The column values must be of a numeric type. The built-in function coalesce takes at least one argument and returns the first of its arguments which is not NULL. If all arguments are NULL, this function returns NULL. This is useful for providing defaults for NULL values in a select query. The built-in function contains returns true if substr is within s. If any argument to contains is NULL the result is NULL. The built-in aggregate function count returns how many times an expression has a non NULL values or the number of rows in a record set. Note: count() returns 0 for an empty record set. For example Date returns the time corresponding to in the appropriate zone for that time in the given location. The month, day, hour, min, sec, and nsec values may be outside their usual ranges and will be normalized during the conversion. For example, October 32 converts to November 1. A daylight savings time transition skips or repeats times. For example, in the United States, March 13, 2011 2:15am never occurred, while November 6, 2011 1:15am occurred twice. In such cases, the choice of time zone, and therefore the time, is not well-defined. Date returns a time that is correct in one of the two zones involved in the transition, but it does not guarantee which. A location maps time instants to the zone in use at that time. Typically, the location represents the collection of time offsets in use in a geographical area, such as "CEST" and "CET" for central Europe. "local" represents the system's local time zone. "UTC" represents Universal Coordinated Time (UTC). The month specifies a month of the year (January = 1, ...). If any argument to date is NULL the result is NULL. The built-in function day returns the day of the month specified by t. If the argument to day is NULL the result is NULL. The built-in function formatTime returns a textual representation of the time value formatted according to layout, which defines the format by showing how the reference time, would be displayed if it were the value; it serves as an example of the desired output. The same display rules will then be applied to the time value. If any argument to formatTime is NULL the result is NULL. NOTE: The string value of the time zone, like "CET" or "ACDT", is dependent on the time zone of the machine the function is run on. For example, if the t value is in "CET", but the machine is in "ACDT", instead of "CET" the result is "+0100". This is the same what Go (time.Time).String() returns and in fact formatTime directly calls t.String(). returns on a machine in the CET time zone, but may return on a machine in the ACDT zone. The time value is in both cases the same so its ordering and comparing is correct. Only the display value can differ. The built-in functions formatFloat and formatInt format numbers to strings using go's number format functions in the `strconv` package. For all three functions, only the first argument is mandatory. The default values of the rest are shown in the examples. If the first argument is NULL, the result is NULL. returns returns returns Unlike the `strconv` equivalent, the formatInt function handles all integer types, both signed and unsigned. The built-in function hasPrefix tests whether the string s begins with prefix. If any argument to hasPrefix is NULL the result is NULL. The built-in function hasSuffix tests whether the string s ends with suffix. If any argument to hasSuffix is NULL the result is NULL. The built-in function hour returns the hour within the day specified by t, in the range [0, 23]. If the argument to hour is NULL the result is NULL. The built-in function hours returns the duration as a floating point number of hours. If the argument to hours is NULL the result is NULL. The built-in function id takes zero or one arguments. If no argument is provided, id() returns a table-unique automatically assigned numeric identifier of type int. Ids of deleted records are not reused unless the DB becomes completely empty (has no tables). For example If id() without arguments is called for a row which is not a table record then the result value is NULL. For example If id() has one argument it must be a table name of a table in a cross join. For example The built-in function len takes a string argument and returns the lentgh of the string in bytes. The expression len(s) is constant if s is a string constant. If the argument to len is NULL the result is NULL. The built-in aggregate function max returns the largest value of an expression in a record set. Max ignores NULL values, but returns NULL if all values of a column are NULL or if max is applied to an empty record set. The expression values must be of an ordered type. For example The built-in aggregate function min returns the smallest value of an expression in a record set. Min ignores NULL values, but returns NULL if all values of a column are NULL or if min is applied to an empty record set. For example The column values must be of an ordered type. The built-in function minute returns the minute offset within the hour specified by t, in the range [0, 59]. If the argument to minute is NULL the result is NULL. The built-in function minutes returns the duration as a floating point number of minutes. If the argument to minutes is NULL the result is NULL. The built-in function month returns the month of the year specified by t (January = 1, ...). If the argument to month is NULL the result is NULL. The built-in function nanosecond returns the nanosecond offset within the second specified by t, in the range [0, 999999999]. If the argument to nanosecond is NULL the result is NULL. The built-in function nanoseconds returns the duration as an integer nanosecond count. If the argument to nanoseconds is NULL the result is NULL. The built-in function now returns the current local time. The built-in function parseTime parses a formatted string and returns the time value it represents. The layout defines the format by showing how the reference time, would be interpreted if it were the value; it serves as an example of the input format. The same interpretation will then be made to the input string. Elements omitted from the value are assumed to be zero or, when zero is impossible, one, so parsing "3:04pm" returns the time corresponding to Jan 1, year 0, 15:04:00 UTC (note that because the year is 0, this time is before the zero Time). Years must be in the range 0000..9999. The day of the week is checked for syntax but it is otherwise ignored. In the absence of a time zone indicator, parseTime returns a time in UTC. When parsing a time with a zone offset like -0700, if the offset corresponds to a time zone used by the current location, then parseTime uses that location and zone in the returned time. Otherwise it records the time as being in a fabricated location with time fixed at the given zone offset. When parsing a time with a zone abbreviation like MST, if the zone abbreviation has a defined offset in the current location, then that offset is used. The zone abbreviation "UTC" is recognized as UTC regardless of location. If the zone abbreviation is unknown, Parse records the time as being in a fabricated location with the given zone abbreviation and a zero offset. This choice means that such a time can be parses and reformatted with the same layout losslessly, but the exact instant used in the representation will differ by the actual zone offset. To avoid such problems, prefer time layouts that use a numeric zone offset. If any argument to parseTime is NULL the result is NULL. The built-in function second returns the second offset within the minute specified by t, in the range [0, 59]. If the argument to second is NULL the result is NULL. The built-in function seconds returns the duration as a floating point number of seconds. If the argument to seconds is NULL the result is NULL. The built-in function since returns the time elapsed since t. It is shorthand for now()-t. If the argument to since is NULL the result is NULL. The built-in aggregate function sum returns the sum of values of an expression for all rows of a record set. Sum ignores NULL values, but returns NULL if all values of a column are NULL or if sum is applied to an empty record set. The column values must be of a numeric type. The built-in function timeIn returns t with the location information set to loc. For discussion of the loc argument please see date(). If any argument to timeIn is NULL the result is NULL. The built-in function weekday returns the day of the week specified by t. Sunday == 0, Monday == 1, ... If the argument to weekday is NULL the result is NULL. The built-in function year returns the year in which t occurs. If the argument to year is NULL the result is NULL. The built-in function yearDay returns the day of the year specified by t, in the range [1,365] for non-leap years, and [1,366] in leap years. If the argument to yearDay is NULL the result is NULL. Three functions assemble and disassemble complex numbers. The built-in function complex constructs a complex value from a floating-point real and imaginary part, while real and imag extract the real and imaginary parts of a complex value. The type of the arguments and return value correspond. For complex, the two arguments must be of the same floating-point type and the return type is the complex type with the corresponding floating-point constituents: complex64 for float32, complex128 for float64. The real and imag functions together form the inverse, so for a complex value z, z == complex(real(z), imag(z)). If the operands of these functions are all constants, the return value is a constant. If any argument to any of complex, real, imag functions is NULL the result is NULL. For the numeric types, the following sizes are guaranteed Portions of this specification page are modifications based on work[2] created and shared by Google[3] and used according to terms described in the Creative Commons 3.0 Attribution License[4]. This specification is licensed under the Creative Commons Attribution 3.0 License, and code is licensed under a BSD license[5]. Links from the above documentation This section is not part of the specification. WARNING: The implementation of indices is new and it surely needs more time to become mature. Indices are used currently used only by the WHERE clause. The following expression patterns of 'WHERE expression' are recognized and trigger index use. The relOp is one of the relation operators <, <=, ==, >=, >. For the equality operator both operands must be of comparable types. For all other operators both operands must be of ordered types. The constant expression is a compile time constant expression. Some constant folding is still a TODO. Parameter is a QL parameter ($1 etc.). Consider tables t and u, both with an indexed field f. The WHERE expression doesn't comply with the above simple detected cases. However, such query is now automatically rewritten to which will use both of the indices. The impact of using the indices can be substantial (cf. BenchmarkCrossJoin*) if the resulting rows have low "selectivity", ie. only few rows from both tables are selected by the respective WHERE filtering. Note: Existing QL DBs can be used and indices can be added to them. However, once any indices are present in the DB, the old QL versions cannot work with such DB anymore. Running a benchmark with -v (-test.v) outputs information about the scale used to report records/s and a brief description of the benchmark. For example Running the full suite of benchmarks takes a lot of time. Use the -timeout flag to avoid them being killed after the default time limit (10 minutes).
Package cloud is the root of the packages used to access Google Cloud Services. See https://godoc.org/cloud.google.com/go for a full list of sub-packages. All clients in sub-packages are configurable via client options. These options are described here: https://godoc.org/google.golang.org/api/option. All the clients in sub-packages support authentication via Google Application Default Credentials (see https://cloud.google.com/docs/authentication/production), or by providing a JSON key file for a Service Account. See the authentication examples in this package for details. By default, all requests in sub-packages will run indefinitely, retrying on transient errors when correctness allows. To set timeouts or arrange for cancellation, use contexts. See the examples for details. Do not attempt to control the initial connection (dialing) of a service by setting a timeout on the context passed to NewClient. Dialing is non-blocking, so timeouts would be ineffective and would only interfere with credential refreshing, which uses the same context. Connection pooling differs in clients based on their transport. Cloud clients either rely on HTTP or gRPC transports to communicate with Google Cloud. Cloud clients that use HTTP (bigquery, compute, storage, and translate) rely on the underlying HTTP transport to cache connections for later re-use. These are cached to the default http.MaxIdleConns and http.MaxIdleConnsPerHost settings in http.DefaultTransport. For gRPC clients (all others in this repo), connection pooling is configurable. Users of cloud client libraries may specify option.WithGRPCConnectionPool(n) as a client option to NewClient calls. This configures the underlying gRPC connections to be pooled and addressed in a round robin fashion. Minimal docker images like Alpine lack CA certificates. This causes RPCs to appear to hang, because gRPC retries indefinitely. See https://github.com/GoogleCloudPlatform/google-cloud-go/issues/928 for more information. To see gRPC logs, set the environment variable GRPC_GO_LOG_SEVERITY_LEVEL. See https://godoc.org/google.golang.org/grpc/grpclog for more information. For HTTP logging, set the GODEBUG environment variable to "http2debug=1" or "http2debug=2". Google Application Default Credentials is the recommended way to authorize and authenticate clients. For information on how to create and obtain Application Default Credentials, see https://developers.google.com/identity/protocols/application-default-credentials. To arrange for an RPC to be canceled, use context.WithCancel. You can use a file with credentials to authenticate and authorize, such as a JSON key file associated with a Google service account. Service Account keys can be created and downloaded from https://console.developers.google.com/permissions/serviceaccounts. This example uses the Datastore client, but the same steps apply to the other client libraries underneath this package. In some cases (for instance, you don't want to store secrets on disk), you can create credentials from in-memory JSON and use the WithCredentials option. The google package in this example is at golang.org/x/oauth2/google. This example uses the PubSub client, but the same steps apply to the other client libraries underneath this package. To set a timeout for an RPC, use context.WithTimeout.
Package kyber provides a toolbox of advanced cryptographic primitives, for applications that need more than straightforward signing and encryption. This top level package defines the interfaces to cryptographic primitives designed to be independent of specific cryptographic algorithms, to facilitate upgrading applications to new cryptographic algorithms or switching to alternative algorithms for experimentation purposes. This toolkits public-key crypto API includes a kyber.Group interface supporting a broad class of group-based public-key primitives including DSA-style integer residue groups and elliptic curve groups. Users of this API can write higher-level crypto algorithms such as zero-knowledge proofs without knowing or caring exactly what kind of group, let alone which precise security parameters or elliptic curves, are being used. The kyber.Group interface supports the standard algebraic operations on group elements and scalars that nontrivial public-key algorithms tend to rely on. The interface uses additive group terminology typical for elliptic curves, such that point addition is homomorphically equivalent to adding their (potentially secret) scalar multipliers. But the API and its operations apply equally well to DSA-style integer groups. As a trivial example, generating a public/private keypair is as simple as: The first statement picks a private key (Scalar) from a the suites's source of cryptographic random or pseudo-random bits, while the second performs elliptic curve scalar multiplication of the curve's standard base point (indicated by the 'nil' argument to Mul) by the scalar private key 'a'. Similarly, computing a Diffie-Hellman shared secret using Alice's private key 'a' and Bob's public key 'B' can be done via: Note that we use 'Mul' rather than 'Exp' here because the library uses the additive-group terminology common for elliptic curve crypto, rather than the multiplicative-group terminology of traditional integer groups - but the two are semantically equivalent and the interface itself works for both elliptic curve and integer groups. Various sub-packages provide several specific implementations of these cryptographic interfaces. In particular, the 'group/mod' sub-package provides implementations of modular integer groups underlying conventional DSA-style algorithms. The `group/nist` package provides NIST-standardized elliptic curves built on the Go crypto library. The 'group/edwards25519' sub-package provides the kyber.Group interface using the popular Ed25519 curve. Other sub-packages build more interesting high-level cryptographic tools atop these primitive interfaces, including: - share: Polynomial commitment and verifiable Shamir secret splitting for implementing verifiable 't-of-n' threshold cryptographic schemes. This can be used to encrypt a message so that any 2 out of 3 receivers must work together to decrypt it, for example. - proof: An implementation of the general Camenisch/Stadler framework for discrete logarithm knowledge proofs. This system supports both interactive and non-interactive proofs of a wide variety of statements such as, "I know the secret x associated with public key X or I know the secret y associated with public key Y", without revealing anything about either secret or even which branch of the "or" clause is true. - sign: The sign directory contains different signature schemes. - sign/anon provides anonymous and pseudonymous public-key encryption and signing, where the sender of a signed message or the receiver of an encrypted message is defined as an explicit anonymity set containing several public keys rather than just one. For example, a member of an organization's board of trustees might prove to be a member of the board without revealing which member she is. - sign/cosi provides collective signature algorithm, where a bunch of signers create a unique, compact and efficiently verifiable signature using the Schnorr signature as a basis. - sign/eddsa provides a kyber-native implementation of the EdDSA signature scheme. - sign/schnorr provides a basic vanilla Schnorr signature scheme implementation. - shuffle: Verifiable cryptographic shuffles of ElGamal ciphertexts, which can be used to implement (for example) voting or auction schemes that keep the sources of individual votes or bids private without anyone having to trust more than one of the shuffler(s) to shuffle votes/bids honestly. As should be obvious, this library is intended to be used by developers who are at least moderately knowledgeable about cryptography. If you want a crypto library that makes it easy to implement "basic crypto" functionality correctly - i.e., plain public-key encryption and signing - then [NaCl secretbox](https://godoc.org/golang.org/x/crypto/nacl/secretbox) may be a better choice. This toolkit's purpose is to make it possible - and preferably easy - to do slightly more interesting things that most current crypto libraries don't support effectively. The one existing crypto library that this toolkit is probably most comparable to is the Charm rapid prototyping library for Python (https://charm-crypto.com/category/charm). This library incorporates and/or builds on existing code from a variety of sources, as documented in the relevant sub-packages. This library is offered as-is, and without a guarantee. It will need an independent security review before it should be considered ready for use in security-critical applications. If you integrate Kyber into your application it is YOUR RESPONSIBILITY to arrange for that audit. If you notice a possible security problem, please report it to dedis-security@epfl.ch.
Package logfmt implements utilities to marshal and unmarshal data in the logfmt format. The logfmt format records key/value pairs in a way that balances readability for humans and simplicity of computer parsing. It is most commonly used as a more human friendly alternative to JSON for structured logging.
Package cmd provides a lightweight commander focused on modern human-computer interaction through terminal command-line interfaces composed of modular subcommands with portable completion, and embedded, dynamic documentation.
Meeus implements algorithms from the book "Astronomical Algorithms" by Jean Meeus. It follows the second edition, copyright 1998, with corrections as of August 10, 2009. It requires Go 1.1 or later. Jean Meeus's book has long been respected as a broad-reaching source of astronomical algorithms, and many code libraries have been based on it. This library will be distinct in several respects, I hope. First of all it is in the Go language, a programming language new enough that it well postdates the book itself. Go has many advantages for a large and diverse library such as this and it is a fine language for for scientific computations. I hope that a Go implementation will prove relevant for some time in the future. Next, this library attempts fairly comprehensive coverage of the book. Each chapter of the book is addressed, and in the very few cases where there seems no code from the chapter that is applicable in Go, similar and more appropriate techniques are at least discussed in documentation. If meaningful, examples are given as well. While this library attempts fairly comprehensive coverage of the book, it does not attempt to present a complete, well rounded, and polished astronomy library. Such a production-quality astronomy library would likely include some updated routines and data, routines and data from other sources, and would fill in various holes of functionality which Meeus elects to gloss over. Such a library could certainly be derived from this one, but it is beyond the scope of what is attempted here. Thus, this library should represent a solid foundation for the development of a broad range of astronomy software. Much software should be able to use this library directly. Some software will need routines from additional sources. When the API of this library begins to present friction with that of other code, it may be time to fork or otherwise derive a new library from this one. Please feel free to do this, respecting of course the MIT license under which this software is offered. By Go convention, each package is in its own subdirectory. The "subdirectories" list of this documentation page lists all packages of of the library. Each package also corresponds to exacly one chapter of the book. The package documentation heading references the chapter number and a cross reference is given below of chapter numbers and package names. Within a chapter of the book, Meeus presents explanatory text, numbered formulas, numbered examples, and other exercises. Within a package of this library, there are library functions and other codified definitions; there are Go examples which appear in documentation and which are also evaluated and verified to produce correct output by the go test feature; and there is test code which is neither part of the API nor the documentation but which verified by the go test feature. The "API", or choice of functions to implement in Go, covers many of Meeus's numbered formulas and covers the algorithms needed to work most of the numbered examples. The correspondence is not one-to-one, but often "refactored" into functions that seem more idiomatic to Go. This is set as the limit of the API however, and thus the limit of the functionality offered by this library. Each numbered example in the book is also translated to a Go example function. This typically shows how to use the implemented API to compute the results of the example. As the go test feature validates these results, the examples also serve as baseline tests of the correctness of the API code. Relevant "exercises" from the book are also often implemented as Go examples. A few packages remain incomplete. A package is considered complete if it implements all major formulas and algorithms and if it implements all numbered examples. For incomplete packages, the package documentation will describe the ways in which it is incomplete and typically give reasons for the incompleteness. In addition to the chapter packages, there is a package called "base". This contains a few definitions that are provided by Meeus but are of such general use that they really don't belong with any one chapter. The much greater bulk of base however, are functions which Meeus does not explicitly provide, but again are of general use. The nature of these functions is as helper subroutines or IO subroutines. The functions do not offer additional astronomy algorithms beyond those provided by Meeus. To more closely follow the book's use of Greek letters and other symbols, Unicode is freely used in the source code. Recognizing that these symbols are awkard to enter in many environments however, they are avoided for exported symbols that comprise the library API. The function Coord.EclToEq for example, returns (α, δ float64) but of course you can assign these return values to whatever variables you like. The struct Coord.Equatorial on the other hand, has exported fields RA and Dec. ASCII is used in this case to simplify using these symbols in your code. Some identifiers use the prime symbol (ʹ). That's Unicode U+02B9, not the ASCII '. Go uses ASCII ' for raw strings and does not allow it in identifiers. U+02B9 on the other hand is Unicode category Lm, and is perfectly valid in Go identifiers. An earler version of this library used the Go type float64 for most parameters and return values. This allowed terse, efficient code but required careful attention to the scaling or units used. Go defined types are now used for Time, RA, HourAngle, and general Angle quantities in the interest of making units and coversions more clear. These types are defined in the external package github.com/soniakeys/unit. An earlier version of this library included routines for formatting sexagesimal quantities. These have been moved to the external package github.com/soniakeys/sexagesimal and use of this package is now restricted to examples and tests. Meeus packages and the sexagesimal package both depend on the unit package. Meeus packages do not depend on sexagesimal, although the Meeus tests do. .
Package lattigo is a cryptographic library implementing lattice-based cryptographic primitives. The library features: Lattigo aims at enabling fast prototyping of secure-multiparty computation solutions based on distributed homomorphic cryptosystems, by harnessing Go's natural concurrency model.
Package tcpinfo implements encoding and decoding of TCP-level socket options regarding connection information. The Transmission Control Protocol (TCP) is defined in RFC 793. TCP Selective Acknowledgment Options is defined in RFC 2018. Management Information Base for the Transmission Control Protocol (TCP) is defined in RFC 4022. TCP Congestion Control is defined in RFC 5681. Computing TCP's Retransmission Timer is described in RFC 6298. TCP Options and Maximum Segment Size (MSS) is defined in RFC 6691. Shared Use of Experimental TCP Options is defined in RFC 6994. TCP Extensions for High Performance is defined in RFC 7323. NOTE: Older Linux kernels may not support extended TCP statistics described in RFC 4898.
Package merkletree provides tools for calculating the Merkle root of a dataset, for creating a proof that a piece of data is in a Merkle tree of a given root, and for verifying proofs that a piece of data is in a Merkle tree of a given root. The tree is implemented according to the specification for Merkle trees provided in RFC 6962. Package merkletree also supports building roots and proofs from cached subroots of the Merkle tree. For example, a large file could be cached by building the Merkle root for each 4MB sector and remembering the Merkle roots of each sector. Using a cached tree, the Merkle root of the whole file can be computed by passing the cached tree each of the roots of the 4MB sector. Building proofs using these cached roots is also supported. A proof must be built within the target sector using a normal Tree, requiring the whole sector to be hashed. The results of that proof can then be passed into the Prove() function of a cached tree, which will create the full proof without needing to hash the entire file. Caching also makes it inexpensive to update the Merkle root of the file after changing or deleting segments of the larger file. Examples can be found in the README for the package.
Package golangsdk provides a multi-vendor interface to OpenStack-compatible clouds. The library has a three-level hierarchy: providers, services, and resources. Provider structs represent the cloud providers that offer and manage a collection of services. You will generally want to create one Provider client per OpenStack cloud. Use your OpenStack credentials to create a Provider client. The IdentityEndpoint is typically refered to as "auth_url" or "OS_AUTH_URL" in information provided by the cloud operator. Additionally, the cloud may refer to TenantID or TenantName as project_id and project_name. Credentials are specified like so: You may also use the openstack.AuthOptionsFromEnv() helper function. This function reads in standard environment variables frequently found in an OpenStack `openrc` file. Again note that Gophercloud currently uses "tenant" instead of "project". Service structs are specific to a provider and handle all of the logic and operations for a particular OpenStack service. Examples of services include: Compute, Object Storage, Block Storage. In order to define one, you need to pass in the parent provider, like so: Resource structs are the domain models that services make use of in order to work with and represent the state of API resources: Intermediate Result structs are returned for API operations, which allow generic access to the HTTP headers, response body, and any errors associated with the network transaction. To turn a result into a usable resource struct, you must call the Extract method which is chained to the response, or an Extract function from an applicable extension: All requests that enumerate a collection return a Pager struct that is used to iterate through the results one page at a time. Use the EachPage method on that Pager to handle each successive Page in a closure, then use the appropriate extraction method from that request's package to interpret that Page as a slice of results: If you want to obtain the entire collection of pages without doing any intermediary processing on each page, you can use the AllPages method: This top-level package contains utility functions and data types that are used throughout the provider and service packages. Of particular note for end users are the AuthOptions and EndpointOpts structs. An example retry backoff function, which respects the 429 HTTP response code:
This is the official Go SDK for Oracle Cloud Infrastructure Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#installing for installation instructions. Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring for configuration instructions. The following example shows how to get started with the SDK. The example belows creates an identityClient struct with the default configuration. It then utilizes the identityClient to list availability domains and prints them out to stdout More examples can be found in the SDK Github repo: https://github.com/oracle/oci-go-sdk/tree/master/example Optional fields are represented with the `mandatory:"false"` tag on input structs. The SDK will omit all optional fields that are nil when making requests. In the case of enum-type fields, the SDK will omit fields whose value is an empty string. The SDK uses pointers for primitive types in many input structs. To aid in the construction of such structs, the SDK provides functions that return a pointer for a given value. For example: The SDK exposes functionality that allows the user to customize any http request before is sent to the service. You can do so by setting the `Interceptor` field in any of the `Client` structs. For example: The Interceptor closure gets called before the signing process, thus any changes done to the request will be properly signed and submitted to the service. The SDK exposes a stand-alone signer that can be used to signing custom requests. Related code can be found here: https://github.com/oracle/oci-go-sdk/blob/master/common/http_signer.go. The example below shows how to create a default signer. The signer also allows more granular control on the headers used for signing. For example: You can combine a custom signer with the exposed clients in the SDK. This allows you to add custom signed headers to the request. Following is an example: Bear in mind that some services have a white list of headers that it expects to be signed. Therefore, adding an arbitrary header can result in authentications errors. To see a runnable example, see https://github.com/oracle/oci-go-sdk/blob/master/example/example_identity_test.go For more information on the signing algorithm refer to: https://docs.cloud.oracle.com/Content/API/Concepts/signingrequests.htm Some operations accept or return polymorphic JSON objects. The SDK models such objects as interfaces. Further the SDK provides structs that implement such interfaces. Thus, for all operations that expect interfaces as input, pass the struct in the SDK that satisfies such interface. For example: In the case of a polymorphic response you can type assert the interface to the expected type. For example: An example of polymorphic JSON request handling can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_test.go#L63 When calling a list operation, the operation will retrieve a page of results. To retrieve more data, call the list operation again, passing in the value of the most recent response's OpcNextPage as the value of Page in the next list operation call. When there is no more data the OpcNextPage field will be nil. An example of pagination using this logic can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_pagination_test.go The SDK has a built-in logging mechanism used internally. The internal logging logic is used to record the raw http requests, responses and potential errors when (un)marshalling request and responses. Built-in logging in the SDK is controlled via the environment variable "OCI_GO_SDK_DEBUG" and its contents. The below are possible values for the "OCI_GO_SDK_DEBUG" variable 1. "info" or "i" enables all info logging messages 2. "debug" or "d" enables all debug and info logging messages 3. "verbose" or "v" or "1" enables all verbose, debug and info logging messages 4. "null" turns all logging messages off. If the value of the environment variable does not match any of the above then default logging level is "info". If the environment variable is not present then no logging messages are emitted. The default destination for logging is Stderr and if you want to output log to a file you can set via environment variable "OCI_GO_SDK_LOG_OUTPUT_MODE". The below are possible values 1. "file" or "f" enables all logging output saved to file 2. "combine" or "c" enables all logging output to both stderr and file You can also customize the log file location and name via "OCI_GO_SDK_LOG_FILE" environment variable, the value should be the path to a specific file If this environment variable is not present, the default location will be the project root path Sometimes you may need to wait until an attribute of a resource, such as an instance or a VCN, reaches a certain state. An example of this would be launching an instance and then waiting for the instance to become available, or waiting until a subnet in a VCN has been terminated. You might also want to retry the same operation again if there's network issue etc... This can be accomplished by using the RequestMetadata.RetryPolicy(request level configuration), alternatively, global(all services) or client level RetryPolicy configration is also possible. You can find the examples here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_retry_test.go If you are trying to make a PUT/POST API call with binary request body, please make sure the binary request body is resettable, which means the request body should inherit Seeker interface. The Retry behavior Precedence (Highest to lowest) is defined as below:- The OCI Go SDK defines a default retry policy that retries on the errors suitable for retries (see https://docs.oracle.com/en-us/iaas/Content/API/References/apierrors.htm), for a recommended period of time (up to 7 attempts spread out over at most approximately 1.5 minutes). This default retry policy can be created using: You can set this retry policy for a single request: or for all requests made by a client: or for all requests made by all clients: or setting default retry via environment varaible, which is a global switch for all services: Some services enable retry for operations by default, this can be overridden using any alternatives mentioned above. Some resources may have to be replicated across regions and are only eventually consistent. That means the request to create, update, or delete the resource succeeded, but the resource is not available everywhere immediately. Creating, updating, or deleting any resource in the Identity service is affected by eventual consistency, and doing so may cause other operations in other services to fail until the Identity resource has been replicated. For example, the request to CreateTag in the Identity service in the home region succeeds, but immediately using that created tag in another region in a request to LaunchInstance in the Compute service may fail. If you are creating, updating, or deleting resources in the Identity service, we recommend using an eventually consistent retry policy for any service you access. The default retry policy already deals with eventual consistency. Example: This retry policy will use a different strategy if an eventually consistent change was made in the recent past (called the "eventually consistent window", currently defined to be 4 minutes after the eventually consistent change). This special retry policy for eventual consistency will: 1. make up to 9 attempts (including the initial attempt); if an attempt is successful, no more attempts will be made 2. retry at most until (a) approximately the end of the eventually consistent window or (b) the end of the default retry period of about 1.5 minutes, whichever is farther in the future; if an attempt is successful, no more attempts will be made, and the OCI Go SDK will not wait any longer 3. retry on the error codes 400-RelatedResourceNotAuthorizedOrNotFound, 404-NotAuthorizedOrNotFound, and 409-NotAuthorizedOrResourceAlreadyExists, for which the default retry policy does not retry, in addition to the errors the default retry policy retries on (see https://docs.oracle.com/en-us/iaas/Content/API/References/apierrors.htm) If there were no eventually consistent actions within the recent past, then this special retry strategy is not used. If you want a retry policy that does not handle eventual consistency in a special way, for example because you retry on all error responses, you can use DefaultRetryPolicyWithoutEventualConsistency or NewRetryPolicyWithOptions with the common.ReplaceWithValuesFromRetryPolicy(common.DefaultRetryPolicyWithoutEventualConsistency()) option: The NewRetryPolicy function also creates a retry policy without eventual consistency. Circuit Breaker can prevent an application repeatedly trying to execute an operation that is likely to fail, allowing it to continue without waiting for the fault to be rectified or wasting CPU cycles, of course, it also enables an application to detect whether the fault has been resolved. If the problem appears to have been rectified, the application can attempt to invoke the operation. Go SDK intergrates sony/gobreaker solution, wraps in a circuit breaker object, which monitors for failures. Once the failures reach a certain threshold, the circuit breaker trips, and all further calls to the circuit breaker return with an error, this also saves the service from being overwhelmed with network calls in case of an outage. Go SDK enable circuit breaker with default configuration, if you don't want to enable the solution, can disable the functionality before your application running Go SDK also supports customize Circuit Breaker with specified configuratoins. You can find the examples here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_circuitbreaker_test.go The GO SDK uses the net/http package to make calls to OCI services. If your environment requires you to use a proxy server for outgoing HTTP requests then you can set this up in the following ways: 1. Configuring environment variable as described here https://golang.org/pkg/net/http/#ProxyFromEnvironment 2. Modifying the underlying Transport struct for a service client In order to modify the underlying Transport struct in HttpClient, you can do something similar to (sample code for audit service client): The Object Storage service supports multipart uploads to make large object uploads easier by splitting the large object into parts. The Go SDK supports raw multipart upload operations for advanced use cases, as well as a higher level upload class that uses the multipart upload APIs. For links to the APIs used for multipart upload operations, see Managing Multipart Uploads (https://docs.cloud.oracle.com/iaas/Content/Object/Tasks/usingmultipartuploads.htm). Higher level multipart uploads are implemented using the UploadManager, which will: split a large object into parts for you, upload the parts in parallel, and then recombine and commit the parts as a single object in storage. This code sample shows how to use the UploadManager to automatically split an object into parts for upload to simplify interaction with the Object Storage service: https://github.com/oracle/oci-go-sdk/blob/master/example/example_objectstorage_test.go Some response fields are enum-typed. In the future, individual services may return values not covered by existing enums for that field. To address this possibility, every enum-type response field is a modeled as a type that supports any string. Thus if a service returns a value that is not recognized by your version of the SDK, then the response field will be set to this value. When individual services return a polymorphic JSON response not available as a concrete struct, the SDK will return an implementation that only satisfies the interface modeling the polymorphic JSON response. If you are using a version of the SDK released prior to the announcement of a new region, you may need to use a workaround to reach it, depending on whether the region is in the oraclecloud.com realm. A region is a localized geographic area. For more information on regions and how to identify them, see Regions and Availability Domains(https://docs.cloud.oracle.com/iaas/Content/General/Concepts/regions.htm). A realm is a set of regions that share entities. You can identify your realm by looking at the domain name at the end of the network address. For example, the realm for xyz.abc.123.oraclecloud.com is oraclecloud.com. oraclecloud.com Realm: For regions in the oraclecloud.com realm, even if common.Region does not contain the new region, the forward compatibility of the SDK can automatically handle it. You can pass new region names just as you would pass ones that are already defined. For more information on passing region names in the configuration, see Configuring (https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring). For details on common.Region, see (https://github.com/oracle/oci-go-sdk/blob/master/common/common.go). Other Realms: For regions in realms other than oraclecloud.com, you can use the following workarounds to reach new regions with earlier versions of the SDK. NOTE: Be sure to supply the appropriate endpoints for your region. You can overwrite the target host with client.Host: If you are authenticating via instance principals, you can set the authentication endpoint in an environment variable: Got a fix for a bug, or a new feature you'd like to contribute? The SDK is open source and accepting pull requests on GitHub https://github.com/oracle/oci-go-sdk Licensing information available at: https://github.com/oracle/oci-go-sdk/blob/master/LICENSE.txt To be notified when a new version of the Go SDK is released, subscribe to the following feed: https://github.com/oracle/oci-go-sdk/releases.atom Please refer to this link: https://github.com/oracle/oci-go-sdk#help
Package metadata provides access to Google Compute Engine (GCE) metadata and API service accounts. This package is a wrapper around the GCE metadata service, as documented at https://developers.google.com/compute/docs/metadata.
Package merkletree provides tools for calculating the Merkle root of a dataset, for creating a proof that a piece of data is in a Merkle tree of a given root, and for verifying proofs that a piece of data is in a Merkle tree of a given root. The tree is implemented according to the specification for Merkle trees provided in RFC 6962. Package merkletree also supports building roots and proofs from cached subroots of the Merkle tree. For example, a large file could be cached by building the Merkle root for each 4MB sector and remembering the Merkle roots of each sector. Using a cached tree, the Merkle root of the whole file can be computed by passing the cached tree each of the roots of the 4MB sector. Building proofs using these cached roots is also supported. A proof must be built within the target sector using a normal Tree, requiring the whole sector to be hashed. The results of that proof can then be passed into the Prove() function of a cached tree, which will create the full proof without needing to hash the entire file. Caching also makes it inexpensive to update the Merkle root of the file after changing or deleting segments of the larger file. Examples can be found in the README for the package.
Package mocks is a generated GoMock package. Package mocks is a generated GoMock package. Package mocks is a generated GoMock package. Package mocks is a generated GoMock package. Package mocks is a generated GoMock package. Package mocks is a generated GoMock package. Package mocks is a generated GoMock package. Package mocks is a generated GoMock package. Package mocks is a generated GoMock package. Package mocks is a generated GoMock package. Package mocks is a generated GoMock package. Package mocks is a generated GoMock package. Package mocks is a generated GoMock package. Package mocks is a generated GoMock package. Package mocks is a generated GoMock package. Package mocks is a generated GoMock package.
Package memsize computes the size of your object graph. So you made a spiffy algorithm and it works really well, but geez it's using way too much memory. Where did it all go? memsize to the rescue! To get started, find a value that references all your objects and scan it. This traverses the graph, counting sizes per type. memsize can handle cycles just fine and tracks both private and public struct fields. Unfortunately function closures cannot be inspected in any way.
Package kyber provides a toolbox of advanced cryptographic primitives, for applications that need more than straightforward signing and encryption. This top level package defines the interfaces to cryptographic primitives designed to be independent of specific cryptographic algorithms, to facilitate upgrading applications to new cryptographic algorithms or switching to alternative algorithms for experimentation purposes. This toolkits public-key crypto API includes a kyber.Group interface supporting a broad class of group-based public-key primitives including DSA-style integer residue groups and elliptic curve groups. Users of this API can write higher-level crypto algorithms such as zero-knowledge proofs without knowing or caring exactly what kind of group, let alone which precise security parameters or elliptic curves, are being used. The kyber.Group interface supports the standard algebraic operations on group elements and scalars that nontrivial public-key algorithms tend to rely on. The interface uses additive group terminology typical for elliptic curves, such that point addition is homomorphically equivalent to adding their (potentially secret) scalar multipliers. But the API and its operations apply equally well to DSA-style integer groups. As a trivial example, generating a public/private keypair is as simple as: The first statement picks a private key (Scalar) from a the suites's source of cryptographic random or pseudo-random bits, while the second performs elliptic curve scalar multiplication of the curve's standard base point (indicated by the 'nil' argument to Mul) by the scalar private key 'a'. Similarly, computing a Diffie-Hellman shared secret using Alice's private key 'a' and Bob's public key 'B' can be done via: Note that we use 'Mul' rather than 'Exp' here because the library uses the additive-group terminology common for elliptic curve crypto, rather than the multiplicative-group terminology of traditional integer groups - but the two are semantically equivalent and the interface itself works for both elliptic curve and integer groups. Various sub-packages provide several specific implementations of these cryptographic interfaces. In particular, the 'group/mod' sub-package provides implementations of modular integer groups underlying conventional DSA-style algorithms. The `group/nist` package provides NIST-standardized elliptic curves built on the Go crypto library. The 'group/edwards25519' sub-package provides the kyber.Group interface using the popular Ed25519 curve. Other sub-packages build more interesting high-level cryptographic tools atop these primitive interfaces, including: - share: Polynomial commitment and verifiable Shamir secret splitting for implementing verifiable 't-of-n' threshold cryptographic schemes. This can be used to encrypt a message so that any 2 out of 3 receivers must work together to decrypt it, for example. - proof: An implementation of the general Camenisch/Stadler framework for discrete logarithm knowledge proofs. This system supports both interactive and non-interactive proofs of a wide variety of statements such as, "I know the secret x associated with public key X or I know the secret y associated with public key Y", without revealing anything about either secret or even which branch of the "or" clause is true. - sign: The sign directory contains different signature schemes. - sign/anon provides anonymous and pseudonymous public-key encryption and signing, where the sender of a signed message or the receiver of an encrypted message is defined as an explicit anonymity set containing several public keys rather than just one. For example, a member of an organization's board of trustees might prove to be a member of the board without revealing which member she is. - sign/cosi provides collective signature algorithm, where a bunch of signers create a unique, compact and efficiently verifiable signature using the Schnorr signature as a basis. - sign/eddsa provides a kyber-native implementation of the EdDSA signature scheme. - sign/schnorr provides a basic vanilla Schnorr signature scheme implementation. - shuffle: Verifiable cryptographic shuffles of ElGamal ciphertexts, which can be used to implement (for example) voting or auction schemes that keep the sources of individual votes or bids private without anyone having to trust more than one of the shuffler(s) to shuffle votes/bids honestly. For now this library should currently be considered experimental: it will definitely be changing in non-backward-compatible ways, and it will need independent security review before it should be considered ready for use in security-critical applications. However, we intend to bring the library closer to stability and real-world usability as quickly as development resources permit, and as interest and application demand dictates. As should be obvious, this library is intended to be used by developers who are at least moderately knowledgeable about cryptography. If you want a crypto library that makes it easy to implement "basic crypto" functionality correctly - i.e., plain public-key encryption and signing - then [NaCl secretbox](https://godoc.org/golang.org/x/crypto/nacl/secretbox) may be a better choice. This toolkit's purpose is to make it possible - and preferably easy - to do slightly more interesting things that most current crypto libraries don't support effectively. The one existing crypto library that this toolkit is probably most comparable to is the Charm rapid prototyping library for Python (https://charm-crypto.com/category/charm). This library incorporates and/or builds on existing code from a variety of sources, as documented in the relevant sub-packages.
This is the official Go SDK for Oracle Cloud Infrastructure Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#installing for installation instructions. Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring for configuration instructions. The following example shows how to get started with the SDK. The example belows creates an identityClient struct with the default configuration. It then utilizes the identityClient to list availability domains and prints them out to stdout More examples can be found in the SDK Github repo: https://github.com/oracle/oci-go-sdk/tree/master/example Optional fields are represented with the `mandatory:"false"` tag on input structs. The SDK will omit all optional fields that are nil when making requests. In the case of enum-type fields, the SDK will omit fields whose value is an empty string. The SDK uses pointers for primitive types in many input structs. To aid in the construction of such structs, the SDK provides functions that return a pointer for a given value. For example: The SDK exposes functionality that allows the user to customize any http request before is sent to the service. You can do so by setting the `Interceptor` field in any of the `Client` structs. For example: The Interceptor closure gets called before the signing process, thus any changes done to the request will be properly signed and submitted to the service. The SDK exposes a stand-alone signer that can be used to signing custom requests. Related code can be found here: https://github.com/oracle/oci-go-sdk/blob/master/common/http_signer.go. The example below shows how to create a default signer. The signer also allows more granular control on the headers used for signing. For example: You can combine a custom signer with the exposed clients in the SDK. This allows you to add custom signed headers to the request. Following is an example: Bear in mind that some services have a white list of headers that it expects to be signed. Therefore, adding an arbitrary header can result in authentications errors. To see a runnable example, see https://github.com/oracle/oci-go-sdk/blob/master/example/example_identity_test.go For more information on the signing algorithm refer to: https://docs.cloud.oracle.com/Content/API/Concepts/signingrequests.htm Some operations accept or return polymorphic JSON objects. The SDK models such objects as interfaces. Further the SDK provides structs that implement such interfaces. Thus, for all operations that expect interfaces as input, pass the struct in the SDK that satisfies such interface. For example: In the case of a polymorphic response you can type assert the interface to the expected type. For example: An example of polymorphic JSON request handling can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_test.go#L63 When calling a list operation, the operation will retrieve a page of results. To retrieve more data, call the list operation again, passing in the value of the most recent response's OpcNextPage as the value of Page in the next list operation call. When there is no more data the OpcNextPage field will be nil. An example of pagination using this logic can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_pagination_test.go The SDK has a built-in logging mechanism used internally. The internal logging logic is used to record the raw http requests, responses and potential errors when (un)marshalling request and responses. Built-in logging in the SDK is controlled via the environment variable "OCI_GO_SDK_DEBUG" and its contents. The below are possible values for the "OCI_GO_SDK_DEBUG" variable 1. "info" or "i" enables all info logging messages 2. "debug" or "d" enables all debug and info logging messages 3. "verbose" or "v" or "1" enables all verbose, debug and info logging messages 4. "null" turns all logging messages off. If the value of the environment variable does not match any of the above then default logging level is "info". If the environment variable is not present then no logging messages are emitted. The default destination for logging is Stderr and if you want to output log to a file you can set via environment variable "OCI_GO_SDK_LOG_OUTPUT_MODE". The below are possible values 1. "file" or "f" enables all logging output saved to file 2. "combine" or "c" enables all logging output to both stderr and file You can also customize the log file location and name via "OCI_GO_SDK_LOG_FILE" environment variable, the value should be the path to a specific file If this environment variable is not present, the default location will be the project root path Sometimes you may need to wait until an attribute of a resource, such as an instance or a VCN, reaches a certain state. An example of this would be launching an instance and then waiting for the instance to become available, or waiting until a subnet in a VCN has been terminated. You might also want to retry the same operation again if there's network issue etc... This can be accomplished by using the RequestMetadata.RetryPolicy. You can find the examples here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_retry_test.go If you are trying to make a PUT/POST API call with binary request body, please make sure the binary request body is resettable, which means the request body should inherit Seeker interface. The OCI Go SDK defines a default retry policy that retries on the errors suitable for retries (see https://docs.oracle.com/en-us/iaas/Content/API/References/apierrors.htm), for a recommended period of time (up to 7 attempts spread out over at most approximately 1.5 minutes). This default retry policy can be created using: You can set this retry policy for a single request: or for all requests made by a client: Some resources may have to be replicated across regions and are only eventually consistent. That means the request to create, update, or delete the resource succeeded, but the resource is not available everywhere immediately. Creating, updating, or deleting any resource in the Identity service is affected by eventual consistency, and doing so may cause other operations in other services to fail until the Identity resource has been replicated. For example, the request to CreateTag in the Identity service in the home region succeeds, but immediately using that created tag in another region in a request to LaunchInstance in the Compute service may fail. If you are creating, updating, or deleting resources in the Identity service, we recommend using an eventually consistent retry policy for any service you access. The default retry policy already deals with eventual consistency. Example: This retry policy will use a different strategy if an eventually consistent change was made in the recent past (called the "eventually consistent window", currently defined to be 4 minutes after the eventually consistent change). This special retry policy for eventual consistency will: 1. make up to 9 attempts (including the initial attempt); if an attempt is successful, no more attempts will be made 2. retry at most until (a) approximately the end of the eventually consistent window or (b) the end of the default retry period of about 1.5 minutes, whichever is farther in the future; if an attempt is successful, no more attempts will be made, and the OCI Go SDK will not wait any longer 3. retry on the error codes 400-RelatedResourceNotAuthorizedOrNotFound, 404-NotAuthorizedOrNotFound, and 409-NotAuthorizedOrResourceAlreadyExists, for which the default retry policy does not retry, in addition to the errors the default retry policy retries on (see https://docs.oracle.com/en-us/iaas/Content/API/References/apierrors.htm) If there were no eventually consistent actions within the recent past, then this special retry strategy is not used. If you want a retry policy that does not handle eventual consistency in a special way, for example because you retry on all error responses, you can use DefaultRetryPolicyWithoutEventualConsistency or NewRetryPolicyWithOptions with the common.ReplaceWithValuesFromRetryPolicy(common.DefaultRetryPolicyWithoutEventualConsistency()) option: The NewRetryPolicy function also creates a retry policy without eventual consistency. The GO SDK uses the net/http package to make calls to OCI services. If your environment requires you to use a proxy server for outgoing HTTP requests then you can set this up in the following ways: 1. Configuring environment variable as described here https://golang.org/pkg/net/http/#ProxyFromEnvironment 2. Modifying the underlying Transport struct for a service client In order to modify the underlying Transport struct in HttpClient, you can do something similar to (sample code for audit service client): The Object Storage service supports multipart uploads to make large object uploads easier by splitting the large object into parts. The Go SDK supports raw multipart upload operations for advanced use cases, as well as a higher level upload class that uses the multipart upload APIs. For links to the APIs used for multipart upload operations, see Managing Multipart Uploads (https://docs.cloud.oracle.com/iaas/Content/Object/Tasks/usingmultipartuploads.htm). Higher level multipart uploads are implemented using the UploadManager, which will: split a large object into parts for you, upload the parts in parallel, and then recombine and commit the parts as a single object in storage. This code sample shows how to use the UploadManager to automatically split an object into parts for upload to simplify interaction with the Object Storage service: https://github.com/oracle/oci-go-sdk/blob/master/example/example_objectstorage_test.go Some response fields are enum-typed. In the future, individual services may return values not covered by existing enums for that field. To address this possibility, every enum-type response field is a modeled as a type that supports any string. Thus if a service returns a value that is not recognized by your version of the SDK, then the response field will be set to this value. When individual services return a polymorphic JSON response not available as a concrete struct, the SDK will return an implementation that only satisfies the interface modeling the polymorphic JSON response. If you are using a version of the SDK released prior to the announcement of a new region, you may need to use a workaround to reach it, depending on whether the region is in the oraclecloud.com realm. A region is a localized geographic area. For more information on regions and how to identify them, see Regions and Availability Domains(https://docs.cloud.oracle.com/iaas/Content/General/Concepts/regions.htm). A realm is a set of regions that share entities. You can identify your realm by looking at the domain name at the end of the network address. For example, the realm for xyz.abc.123.oraclecloud.com is oraclecloud.com. oraclecloud.com Realm: For regions in the oraclecloud.com realm, even if common.Region does not contain the new region, the forward compatibility of the SDK can automatically handle it. You can pass new region names just as you would pass ones that are already defined. For more information on passing region names in the configuration, see Configuring (https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring). For details on common.Region, see (https://github.com/oracle/oci-go-sdk/blob/master/common/common.go). Other Realms: For regions in realms other than oraclecloud.com, you can use the following workarounds to reach new regions with earlier versions of the SDK. NOTE: Be sure to supply the appropriate endpoints for your region. You can overwrite the target host with client.Host: If you are authenticating via instance principals, you can set the authentication endpoint in an environment variable: Got a fix for a bug, or a new feature you'd like to contribute? The SDK is open source and accepting pull requests on GitHub https://github.com/oracle/oci-go-sdk Licensing information available at: https://github.com/oracle/oci-go-sdk/blob/master/LICENSE.txt To be notified when a new version of the Go SDK is released, subscribe to the following feed: https://github.com/oracle/oci-go-sdk/releases.atom Please refer to this link: https://github.com/oracle/oci-go-sdk#help
Package quantile implements a streaming quantile estimator. The implementation is based on "Effective Computation of Biased Quantiles over Data Streams" (Cormode, Korn, Muthukrishnan, Srivastava) to provide a space and time efficient estimator for online quantile estimation. For the normal distribution of 10^9 elements, a tolerance for 0.99th percentile at 0.001 uses under 1000 bins at 32 bytes per bin.
Package pq implements a priority queue data structure on top of container/heap. As an addition to regular operations, it allows an update of an items priority, allowing the queue to be used in graph search algorithms like Dijkstra's algorithm. Computational complexities of operations are mainly determined by container/heap. In addition, a map of items is maintained, allowing O(1) lookup needed for priority updates, which themselves are O(log n).
Package cloud is the root of the packages used to access Google Cloud Services. See https://godoc.org/cloud.google.com/go for a full list of sub-packages. All clients in sub-packages are configurable via client options. These options are described here: https://godoc.org/google.golang.org/api/option. All the clients in sub-packages support authentication via Google Application Default Credentials (see https://cloud.google.com/docs/authentication/production), or by providing a JSON key file for a Service Account. See the authentication examples in this package for details. By default, all requests in sub-packages will run indefinitely, retrying on transient errors when correctness allows. To set timeouts or arrange for cancellation, use contexts. See the examples for details. Do not attempt to control the initial connection (dialing) of a service by setting a timeout on the context passed to NewClient. Dialing is non-blocking, so timeouts would be ineffective and would only interfere with credential refreshing, which uses the same context. Connection pooling differs in clients based on their transport. Cloud clients either rely on HTTP or gRPC transports to communicate with Google Cloud. Cloud clients that use HTTP (bigquery, compute, storage, and translate) rely on the underlying HTTP transport to cache connections for later re-use. These are cached to the default http.MaxIdleConns and http.MaxIdleConnsPerHost settings in http.DefaultTransport. For gRPC clients (all others in this repo), connection pooling is configurable. Users of cloud client libraries may specify option.WithGRPCConnectionPool(n) as a client option to NewClient calls. This configures the underlying gRPC connections to be pooled and addressed in a round robin fashion. Minimal docker images like Alpine lack CA certificates. This causes RPCs to appear to hang, because gRPC retries indefinitely. See https://github.com/GoogleCloudPlatform/google-cloud-go/issues/928 for more information. To see gRPC logs, set the environment variable GRPC_GO_LOG_SEVERITY_LEVEL. See https://godoc.org/google.golang.org/grpc/grpclog for more information. For HTTP logging, set the GODEBUG environment variable to "http2debug=1" or "http2debug=2". Google Application Default Credentials is the recommended way to authorize and authenticate clients. For information on how to create and obtain Application Default Credentials, see https://developers.google.com/identity/protocols/application-default-credentials. To arrange for an RPC to be canceled, use context.WithCancel. You can use a file with credentials to authenticate and authorize, such as a JSON key file associated with a Google service account. Service Account keys can be created and downloaded from https://console.developers.google.com/permissions/serviceaccounts. This example uses the Datastore client, but the same steps apply to the other client libraries underneath this package. In some cases (for instance, you don't want to store secrets on disk), you can create credentials from in-memory JSON and use the WithCredentials option. The google package in this example is at golang.org/x/oauth2/google. This example uses the PubSub client, but the same steps apply to the other client libraries underneath this package. To set a timeout for an RPC, use context.WithTimeout.
Package wag provides a high-level WebAssembly compiler API. See the Compile function's source code for an example of how to use the low-level compiler APIs (implemented in subpackages). ModuleError and ResourceLimit error types are accessible via errors subpackage. Such errors may be returned by compilation and other parsing functions. Other types of errors indicate either a read error or an internal compiler error. (Unexpected EOF is a ModuleError which wraps io.ErrUnexpectedEOF.)