It is often convenient to partition a job into multiple steps, and have them run concurrently, like a car factory might have different stages in a manufactoring facility. It is also convenient to specify how many workers are desired at each stage of the process. For one stage you may need 5 workers, but for another stage you may want between 25 and 50. This library, go concurent job queues, gocjq, makes setting up these sort of examples quite easy. Create a structure to hold your job's information, give your structure methods to be invoked for each stage, then create a JobQueue that invokes your methods in the proper order.
Package goworker is a Resque-compatible, Go-based background worker. It allows you to push jobs into a queue using an expressive language like Ruby while harnessing the efficiency and concurrency of Go to minimize job latency and cost. goworker workers can run alongside Ruby Resque clients so that you can keep all but your most resource-intensive jobs in Ruby. To create a worker, write a function matching the signature and register it using Here is a simple worker that prints its arguments: To create workers that share a database pool or other resources, use a closure to share variables. goworker worker functions receive the queue they are serving and a slice of interfaces. To use them as parameters to other functions, use Go type assertions to convert them into usable types. For testing, it is helpful to use the redis-cli program to insert jobs onto the Redis queue: will insert 100 jobs for the MyClass worker onto the myqueue queue. It is equivalent to: After building your workers, you will have an executable that you can run which will automatically poll a Redis server and call your workers as jobs arrive. There are several flags which control the operation of the goworker client. -queues="comma,delimited,queues" — This is the only required flag. The recommended practice is to separate your Resque workers from your goworkers with different queues. Otherwise, Resque worker classes that have no goworker analog will cause the goworker process to fail the jobs. Because of this, there is no default queue, nor is there a way to select all queues (à la Resque's * queue). Queues are processed in the order they are specififed. If you have multiple queues you can assign them weights. A queue with a weight of 2 will be checked twice as often as a queue with a weight of 1: -queues='high=2,low=1'. -interval=5.0 — Specifies the wait period between polling if no job was in the queue the last time one was requested. -concurrency=25 — Specifies the number of concurrently executing workers. This number can be as low as 1 or rather comfortably as high as 100,000, and should be tuned to your workflow and the availability of outside resources. -connections=2 — Specifies the maximum number of Redis connections that goworker will consume between the poller and all workers. There is not much performance gain over two and a slight penalty when using only one. This is configurable in case you need to keep connection counts low for cloud Redis providers who limit plans on maxclients. -uri=redis://localhost:6379/ — Specifies the URI of the Redis database from which goworker polls for jobs. Accepts URIs of the format redis://user:pass@host:port/db or unix:///path/to/redis.sock. The flag may also be set by the environment variable $($REDIS_PROVIDER) or $REDIS_URL. E.g. set $REDIS_PROVIDER to REDISTOGO_URL on Heroku to let the Redis To Go add-on configure the Redis database. -namespace=resque: — Specifies the namespace from which goworker retrieves jobs and stores stats on workers. -exit-on-complete=false — Exits goworker when there are no jobs left in the queue. This is helpful in conjunction with the time command to benchmark different configurations. -use-number=false — Uses json.Number when decoding numbers in the job payloads. This will avoid issues that occur when goworker and the json package decode large numbers as floats, which then get encoded in scientific notation, losing pecision. This will default to true soon. You can also configure your own flags for use within your workers. Be sure to set them before calling goworker.Main(). It is okay to call flags.Parse() before calling goworker.Main() if you need to do additional processing on your flags. To stop goworker, send a QUIT, TERM, or INT signal to the process. This will immediately stop job polling. There can be up to $CONCURRENCY jobs currently running, which will continue to run until they are finished. Like Resque, goworker makes no guarantees about the safety of jobs in the event of process shutdown. Workers must be both idempotent and tolerant to loss of the job in the event of failure. If the process is killed with a KILL or by a system failure, there may be one job that is currently in the poller's buffer that will be lost without any representation in either the queue or the worker variable. If you are running Goworker on a system like Heroku, which sends a TERM to signal a process that it needs to stop, ten seconds later sends a KILL to force the process to stop, your jobs must finish within 10 seconds or they may be lost. Jobs will be recoverable from the Redis database under as a JSON object with keys queue, run_at, and payload, but the process is manual. Additionally, there is no guarantee that the job in Redis under the worker key has not finished, if the process is killed before goworker can flush the update to Redis.
Package que-go is a fully interoperable Golang port of Chris Hanks' Ruby Que queueing library for PostgreSQL. Que uses PostgreSQL's advisory locks for speed and reliability. See the original Que documentation for more details: https://github.com/chanks/que Because que-go is an interoperable port of Que, you can enqueue jobs in Ruby (i.e. from a Rails app) and write your workers in Go. Or if you have a limited set of jobs that you want to write in Go, you can leave most of your workers in Ruby and just add a few Go workers on a different queue name. Instead of using database/sql and the more popular pq PostgreSQL driver, this package uses the pgx driver: https://github.com/jackc/pgx Because Que uses session-level advisory locks, we have to hold the same connection throughout the process of getting a job, working it, deleting it, and removing the lock. Pq and the built-in database/sql interfaces do not offer this functionality, so we'd have to implement our own connection pool. Fortunately, pgx already has a perfectly usable one built for us. Even better, it offers better performance than pq due largely to its use of binary encoding. que-go relies on prepared statements for performance. As of now these have to be initialized manually on your connection pool like so: If you have suggestions on how to cleanly do this automatically, please open an issue! Here is a complete example showing worker setup and two jobs enqueued, one with a delay:
Package amboy provides basic infrastructure for running and describing tasks and task workflows with, potentially, minimal overhead and additional complexity. Amboy works with 4 basic logical objects: jobs, or descriptions of tasks; runnners, which are responsible for executing tasks; queues, that represent pipelines and offline workflows of tasks (e.g. not real time, processes that run outside of the primary execution path of a program); and dependencies that represent relationships between jobs. The inspiration for amboy was to be able to provide a unified way to define and run jobs, that would feel equally "native" for distributed applications and distributed web application, and move easily between different architectures. While amboy users will generally implement their own Job and dependency implementations, Amboy itself provides several example Queue implementations, as well as several generic examples and prototypes of Job and dependency.Manager objects. Generally speaking you should be able to use included amboy components to provide the queue and runner components, in conjunction with custom and generic job and dependency variations. Consider the following example: The amboy package proves a number of generic methods that, using the Queue.Stats() method, block until all jobs are complete. They provide different semantics, which may be useful in different circumstances. All of these functions wait until the total number of jobs submitted to the queue is equal to the number of completed jobs, and as a result these methods don't prevent other threads from adding jobs to the queue after beginning to wait. Additionally, there are a set of methods that allow callers to wait for a specific job to complete.
Package pgq provides an implementation of a Postgres-backed job queue. Safe concurrency is built on top of the SKIP LOCKED functionality introduced in Postgres 9.5. Retries and exponential backoff are supported.
Package mgojq is a wrapper for mgo that turns MongoDB into a job queue.
Package goworker is a Resque-compatible, Go-based background worker. It allows you to push jobs into a queue using an expressive language like Ruby while harnessing the efficiency and concurrency of Go to minimize job latency and cost. goworker workers can run alongside Ruby Resque clients so that you can keep all but your most resource-intensive jobs in Ruby. To create a worker, write a function matching the signature and register it using Here is a simple worker that prints its arguments: To create workers that share a database pool or other resources, use a closure to share variables. goworker worker functions receive the queue they are serving and a slice of interfaces. To use them as parameters to other functions, use Go type assertions to convert them into usable types. For testing, it is helpful to use the redis-cli program to insert jobs onto the Redis queue: will insert 100 jobs for the MyClass worker onto the myqueue queue. It is equivalent to: After building your workers, you will have an executable that you can run which will automatically poll a Redis server and call your workers as jobs arrive. There are several flags which control the operation of the goworker client. -queues="comma,delimited,queues" — This is the only required flag. The recommended practice is to separate your Resque workers from your goworkers with different queues. Otherwise, Resque worker classes that have no goworker analog will cause the goworker process to fail the jobs. Because of this, there is no default queue, nor is there a way to select all queues (à la Resque's * queue). Queues are processed in the order they are specififed. If you have multiple queues you can assign them weights. A queue with a weight of 2 will be checked twice as often as a queue with a weight of 1: -queues='high=2,low=1'. -interval=5.0 — Specifies the wait period between polling if no job was in the queue the last time one was requested. -concurrency=25 — Specifies the number of concurrently executing workers. This number can be as low as 1 or rather comfortably as high as 100,000, and should be tuned to your workflow and the availability of outside resources. -connections=2 — Specifies the maximum number of Redis connections that goworker will consume between the poller and all workers. There is not much performance gain over two and a slight penalty when using only one. This is configurable in case you need to keep connection counts low for cloud Redis providers who limit plans on maxclients. -uri=redis://localhost:6379/ — Specifies the URI of the Redis database from which goworker polls for jobs. Accepts URIs of the format redis://user:pass@host:port/db or unix:///path/to/redis.sock. The flag may also be set by the environment variable $($REDIS_PROVIDER) or $REDIS_URL. E.g. set $REDIS_PROVIDER to REDISTOGO_URL on Heroku to let the Redis To Go add-on configure the Redis database. -namespace=resque: — Specifies the namespace from which goworker retrieves jobs and stores stats on workers. -exit-on-complete=false — Exits goworker when there are no jobs left in the queue. This is helpful in conjunction with the time command to benchmark different configurations. -use-number=false — Uses json.Number when decoding numbers in the job payloads. This will avoid issues that occur when goworker and the json package decode large numbers as floats, which then get encoded in scientific notation, losing pecision. This will default to true soon. You can also configure your own flags for use within your workers. Be sure to set them before calling goworker.Main(). It is okay to call flags.Parse() before calling goworker.Main() if you need to do additional processing on your flags. To stop goworker, send a QUIT, TERM, or INT signal to the process. This will immediately stop job polling. There can be up to $CONCURRENCY jobs currently running, which will continue to run until they are finished. Like Resque, goworker makes no guarantees about the safety of jobs in the event of process shutdown. Workers must be both idempotent and tolerant to loss of the job in the event of failure. If the process is killed with a KILL or by a system failure, there may be one job that is currently in the poller's buffer that will be lost without any representation in either the queue or the worker variable. If you are running Goworker on a system like Heroku, which sends a TERM to signal a process that it needs to stop, ten seconds later sends a KILL to force the process to stop, your jobs must finish within 10 seconds or they may be lost. Jobs will be recoverable from the Redis database under as a JSON object with keys queue, run_at, and payload, but the process is manual. Additionally, there is no guarantee that the job in Redis under the worker key has not finished, if the process is killed before goworker can flush the update to Redis.
Signal Handling in goworker To stop goworker, send a QUIT, TERM, or INT signal to the process. This will immediately stop job polling. There can be up to $CONCURRENCY jobs currently running, which will continue to run until they are finished. Like Resque, goworker makes no guarantees about the safety of jobs in the event of process shutdown. Workers must be both idempotent and tolerant to loss of the job in the event of failure. If the process is killed with a KILL or by a system failure, there may be one job that is currently in the poller's buffer that will be lost without any representation in either the queue or the worker variable. If you are running Goworker on a system like Heroku, which sends a TERM to signal a process that it needs to stop, ten seconds later sends a KILL to force the process to stop, your jobs must finish within 10 seconds or they may be lost. Jobs will be recoverable from the Redis database under as a JSON object with keys queue, run_at, and payload, but the process is manual. Additionally, there is no guarantee that the job in Redis under the worker key has not finished, if the process is killed before goworker can flush the update to Redis.
goworker is a Resque-compatible, Go-based background worker. It allows you to push jobs into a queue using an expressive language like Ruby while harnessing the efficiency and concurrency of Go to minimize job latency and cost. goworker workers can run alongside Ruby Resque clients so that you can keep all but your most resource-intensive jobs in Ruby. To create a worker, write a function matching the signature and register it using Here is a simple worker that prints its arguments: To create workers that share a database pool or other resources, use a closure to share variables. goworker worker functions receive the queue they are serving and a slice of interfaces. To use them as parameters to other functions, use Go type assertions to convert them into usable types. For testing, it is helpful to use the redis-cli program to insert jobs onto the Redis queue: will insert 100 jobs for the MyClass worker onto the myqueue queue. It is equivalent to: After building your workers, you will have an executable that you can run which will automatically poll a Redis server and call your workers as jobs arrive. There are several flags which control the operation of the goworker client. -queues="comma,delimited,queues" — This is the only required flag. The recommended practice is to separate your Resque workers from your goworkers with different queues. Otherwise, Resque worker classes that have no goworker analog will cause the goworker process to fail the jobs. Because of this, there is no default queue, nor is there a way to select all queues (à la Resque's * queue). Queues are processed in the order they are specififed. If you have multiple queues you can assign them weights. A queue with a weight of 2 will weight of 1: -queues='high=2,low=1'. -interval=5.0 — Specifies the wait period between polling if no job was in the queue the last time one was requested. -concurrency=25 — Specifies the number of concurrently executing workers. This number can be as low as 1 or rather comfortably as high as 100,000, and should be tuned to your workflow and the availability of outside resources. -connections=2 — Specifies the maximum number of Redis connections that goworker will consume between the poller and all workers. There is not much performance gain over two and a slight penalty when using only one. This is configurable in case you need to keep connection counts low for cloud Redis providers who limit plans on maxclients. -uri=redis://localhost:6379/ — Specifies the URI of the Redis database from which goworker polls for jobs. Accepts URIs of the format redis://user:pass@host:port/db or unix:///path/to/redis.sock. The flag may also be set by the environment variable $($REDIS_PROVIDER) or $REDIS_URL. E.g. set $REDIS_PROVIDER to REDISTOGO_URL on Heroku to let the Redis To Go add-on configure the Redis database. -namespace=resque: — Specifies the namespace from which goworker retrieves jobs and stores stats on workers. -exit-on-complete=false — Exits goworker when there are no jobs left in the queue. This is helpful in conjunction with the time command to benchmark different configurations. You can also configure your own flags for use within your workers. Be sure to set them before calling goworker.Main(). It is okay to call flags.Parse() before calling goworker.Main() if you need to do additional processing on your flags. To stop goworker, send a QUIT, TERM, or INT signal to the process. This will immediately stop job polling. There can be up to $CONCURRENCY jobs currently running, which will continue to run until they are finished. Like Resque, goworker makes no guarantees about the safety of jobs in the event of process shutdown. Workers must be both idempotent and tolerant to loss of the job in the event of failure. If the process is killed with a KILL or by a system failure, there may be one job that is currently in the poller's buffer that will be lost without any representation in either the queue or the worker variable. If you are running Goworker on a system like Heroku, which sends a TERM to signal a process that it needs to stop, ten seconds later sends a KILL to force the process to stop, your jobs must finish within 10 seconds or they may be lost. Jobs will be recoverable from the Redis database under as a JSON object with keys queue, run_at, and payload, but the process is manual. Additionally, there is no guarantee that the job in Redis under the worker key has not finished, if the process is killed before goworker can flush the update to Redis.
Package goworker is a Resque-compatible, Go-based background worker. It allows you to push jobs into a queue using an expressive language like Ruby while harnessing the efficiency and concurrency of Go to minimize job latency and cost. goworker workers can run alongside Ruby Resque clients so that you can keep all but your most resource-intensive jobs in Ruby. To create a worker, write a function matching the signature and register it using Here is a simple worker that prints its arguments: To create workers that share a database pool or other resources, use a closure to share variables. goworker worker functions receive the queue they are serving and a slice of interfaces. To use them as parameters to other functions, use Go type assertions to convert them into usable types. For testing, it is helpful to use the redis-cli program to insert jobs onto the Redis queue: will insert 100 jobs for the MyClass worker onto the myqueue queue. It is equivalent to: After building your workers, you will have an executable that you can run which will automatically poll a Redis server and call your workers as jobs arrive. There are several flags which control the operation of the goworker client. -queues="comma,delimited,queues" — This is the only required flag. The recommended practice is to separate your Resque workers from your goworkers with different queues. Otherwise, Resque worker classes that have no goworker analog will cause the goworker process to fail the jobs. Because of this, there is no default queue, nor is there a way to select all queues (à la Resque's * queue). Queues are processed in the order they are specififed. If you have multiple queues you can assign them weights. A queue with a weight of 2 will be checked twice as often as a queue with a weight of 1: -queues='high=2,low=1'. -interval=5.0 — Specifies the wait period between polling if no job was in the queue the last time one was requested. -concurrency=25 — Specifies the number of concurrently executing workers. This number can be as low as 1 or rather comfortably as high as 100,000, and should be tuned to your workflow and the availability of outside resources. -connections=2 — Specifies the maximum number of Redis connections that goworker will consume between the poller and all workers. There is not much performance gain over two and a slight penalty when using only one. This is configurable in case you need to keep connection counts low for cloud Redis providers who limit plans on maxclients. -uri=redis://localhost:6379/ — Specifies the URI of the Redis database from which goworker polls for jobs. Accepts URIs of the format redis://user:pass@host:port/db or unix:///path/to/redis.sock. The flag may also be set by the environment variable $($REDIS_PROVIDER) or $REDIS_URL. E.g. set $REDIS_PROVIDER to REDISTOGO_URL on Heroku to let the Redis To Go add-on configure the Redis database. -namespace=resque: — Specifies the namespace from which goworker retrieves jobs and stores stats on workers. -exit-on-complete=false — Exits goworker when there are no jobs left in the queue. This is helpful in conjunction with the time command to benchmark different configurations. -use-number=false — Uses json.Number when decoding numbers in the job payloads. This will avoid issues that occur when goworker and the json package decode large numbers as floats, which then get encoded in scientific notation, losing pecision. This will default to true soon. You can also configure your own flags for use within your workers. Be sure to set them before calling goworker.Main(). It is okay to call flags.Parse() before calling goworker.Main() if you need to do additional processing on your flags. To stop goworker, send a QUIT, TERM, or INT signal to the process. This will immediately stop job polling. There can be up to $CONCURRENCY jobs currently running, which will continue to run until they are finished. Like Resque, goworker makes no guarantees about the safety of jobs in the event of process shutdown. Workers must be both idempotent and tolerant to loss of the job in the event of failure. If the process is killed with a KILL or by a system failure, there may be one job that is currently in the poller's buffer that will be lost without any representation in either the queue or the worker variable. If you are running Goworker on a system like Heroku, which sends a TERM to signal a process that it needs to stop, ten seconds later sends a KILL to force the process to stop, your jobs must finish within 10 seconds or they may be lost. Jobs will be recoverable from the Redis database under as a JSON object with keys queue, run_at, and payload, but the process is manual. Additionally, there is no guarantee that the job in Redis under the worker key has not finished, if the process is killed before goworker can flush the update to Redis.
Package pool provides worker pool with job queue.
Package que-go is a fully interoperable Golang port of Chris Hanks' Ruby Que queueing library for PostgreSQL. Que uses PostgreSQL's advisory locks for speed and reliability. See the original Que documentation for more details: https://github.com/chanks/que Because que-go is an interoperable port of Que, you can enqueue jobs in Ruby (i.e. from a Rails app) and write your workers in Go. Or if you have a limited set of jobs that you want to write in Go, you can leave most of your workers in Ruby and just add a few Go workers on a different queue name. Instead of using database/sql and the more popular pq PostgreSQL driver, this package uses the pgx driver: https://github.com/jackc/pgx Because Que uses session-level advisory locks, we have to hold the same connection throughout the process of getting a job, working it, deleting it, and removing the lock. Pq and the built-in database/sql interfaces do not offer this functionality, so we'd have to implement our own connection pool. Fortunately, pgx already has a perfectly usable one built for us. Even better, it offers better performance than pq due largely to its use of binary encoding. que-go relies on prepared statements for performance. As of now these have to be initialized manually on your connection pool like so: If you have suggestions on how to cleanly do this automatically, please open an issue! Here is a complete example showing worker setup and two jobs enqueued, one with a delay:
goworker is a Resque-compatible, Go-based background worker. It allows you to push jobs into a queue using an expressive language like Ruby while harnessing the efficiency and concurrency of Go to minimize job latency and cost. goworker workers can run alongside Ruby Resque clients so that you can keep all but your most resource-intensive jobs in Ruby. To create a worker, write a function matching the signature and register it using Here is a simple worker that prints its arguments: To create workers that share a database pool or other resources, use a closure to share variables. goworker worker functions receive the queue they are serving and a slice of interfaces. To use them as parameters to other functions, use Go type assertions to convert them into usable types. For testing, it is helpful to use the redis-cli program to insert jobs onto the Redis queue: will insert 100 jobs for the MyClass worker onto the myqueue queue. It is equivalent to: After building your workers, you will have an executable that you can run which will automatically poll a Redis server and call your workers as jobs arrive. There are several flags which control the operation of the goworker client. -queues="comma,delimited,queues" — This is the only required flag. The recommended practice is to separate your Resque workers from your goworkers with different queues. Otherwise, Resque worker classes that have no goworker analog will cause the goworker process to fail the jobs. Because of this, there is no default queue, nor is there a way to select all queues (à la Resque's * queue). Queues are processed in the order they are specififed. If you have multiple queues you can assign them weights. A queue with a weight of 2 will weight of 1: -queues='high=2,low=1'. -interval=5.0 — Specifies the wait period between polling if no job was in the queue the last time one was requested. -concurrency=25 — Specifies the number of concurrently executing workers. This number can be as low as 1 or rather comfortably as high as 100,000, and should be tuned to your workflow and the availability of outside resources. -connections=2 — Specifies the maximum number of Redis connections that goworker will consume between the poller and all workers. There is not much performance gain over two and a slight penalty when using only one. This is configurable in case you need to keep connection counts low for cloud Redis providers who limit plans on maxclients. -uri=redis://localhost:6379/ — Specifies the URI of the Redis database from which goworker polls for jobs. Accepts URIs of the format redis://user:pass@host:port/db or unix:///path/to/redis.sock. The flag may also be set by the environment variable $($REDIS_PROVIDER) or $REDIS_URL. E.g. set $REDIS_PROVIDER to REDISTOGO_URL on Heroku to let the Redis To Go add-on configure the Redis database. -namespace=resque: — Specifies the namespace from which goworker retrieves jobs and stores stats on workers. -exit-on-complete=false — Exits goworker when there are no jobs left in the queue. This is helpful in conjunction with the time command to benchmark different configurations. You can also configure your own flags for use within your workers. Be sure to set them before calling goworker.Main(). It is okay to call flags.Parse() before calling goworker.Main() if you need to do additional processing on your flags. To stop goworker, send a QUIT, TERM, or INT signal to the process. This will immediately stop job polling. There can be up to $CONCURRENCY jobs currently running, which will continue to run until they are finished. Like Resque, goworker makes no guarantees about the safety of jobs in the event of process shutdown. Workers must be both idempotent and tolerant to loss of the job in the event of failure. If the process is killed with a KILL or by a system failure, there may be one job that is currently in the poller's buffer that will be lost without any representation in either the queue or the worker variable. If you are running Goworker on a system like Heroku, which sends a TERM to signal a process that it needs to stop, ten seconds later sends a KILL to force the process to stop, your jobs must finish within 10 seconds or they may be lost. Jobs will be recoverable from the Redis database under as a JSON object with keys queue, run_at, and payload, but the process is manual. Additionally, there is no guarantee that the job in Redis under the worker key has not finished, if the process is killed before goworker can flush the update to Redis.
Package que-go is a fully interoperable Golang port of Chris Hanks' Ruby Que queueing library for PostgreSQL. Que uses PostgreSQL's advisory locks for speed and reliability. See the original Que documentation for more details: https://github.com/chanks/que Because que-go is an interoperable port of Que, you can enqueue jobs in Ruby (i.e. from a Rails app) and write your workers in Go. Or if you have a limited set of jobs that you want to write in Go, you can leave most of your workers in Ruby and just add a few Go workers on a different queue name. Instead of using database/sql and the more popular pq PostgreSQL driver, this package uses the pgx driver: https://github.com/jackc/pgx Because Que uses session-level advisory locks, we have to hold the same connection throughout the process of getting a job, working it, deleting it, and removing the lock. Pq and the built-in database/sql interfaces do not offer this functionality, so we'd have to implement our own connection pool. Fortunately, pgx already has a perfectly usable one built for us. Even better, it offers better performance than pq due largely to its use of binary encoding. que-go relies on prepared statements for performance. As of now these have to be initialized manually on your connection pool like so: If you have suggestions on how to cleanly do this automatically, please open an issue! Here is a complete example showing worker setup and two jobs enqueued, one with a delay:
Jobs consist of one function that will be executed, and one function that will be called when the first function returns an error, e.g. in order to roll back changes or clean up. First, create a new Queue with a buffer size using the make function. If you do not use a buffer, Adding Jobs will block until the Queue is empty, rendering it rather useless. You can Add jobs to it at any time using AddJob. Whenever you are ready to start executing Jobs, call StartWorking. You can still add jobs afterwards. When you're done with the Queue, you can call Close on it. This will close the underlying channel.
Package que-go is a fully interoperable Golang port of Chris Hanks' Ruby Que queueing library for PostgreSQL. Que uses PostgreSQL's advisory locks for speed and reliability. See the original Que documentation for more details: https://github.com/chanks/que Because que-go is an interoperable port of Que, you can enqueue jobs in Ruby (i.e. from a Rails app) and write your workers in Go. Or if you have a limited set of jobs that you want to write in Go, you can leave most of your workers in Ruby and just add a few Go workers on a different queue name. Instead of using database/sql and the more popular pq PostgreSQL driver, this package uses the pgx driver: https://github.com/jackc/pgx Because Que uses session-level advisory locks, we have to hold the same connection throughout the process of getting a job, working it, deleting it, and removing the lock. Pq and the built-in database/sql interfaces do not offer this functionality, so we'd have to implement our own connection pool. Fortunately, pgx already has a perfectly usable one built for us. Even better, it offers better performance than pq due largely to its use of binary encoding. que-go relies on prepared statements for performance. As of now these have to be initialized manually on your connection pool like so: If you have suggestions on how to cleanly do this automatically, please open an issue! Here is a complete example showing worker setup and two jobs enqueued, one with a delay:
Package gue implements Golang queue on top of PostgreSQL. It uses transaction-level locks for concurrent work. Package supports several PostgreSQL drivers using adapter interface internally. Currently, adapters for the following drivers have been implemented: Here is a complete example showing worker setup for pgx/v4 and two jobs enqueued, one with a delay:
Package gotowork implements a simple worker pool. First we create a WorkerQueue that can hold up to 5 workers Next we create 5 workers and start each one Then we add some jobs to the queue Once all work has been dispatched we tell the workers to stop Then wait for all the workers to finish the current jobs Provides a simple and easy to use worker queue.
Package main is a stub for wr's command line interface, with the actual implementation in the cmd package. wr is a workflow runner. You use it to run the commands in your workflow easily, automatically, reliably, with repeatability, and while making optimal use of your available computing resources. wr is implemented as a polling-free in-memory job queue with an on-disk acid transactional embedded database, written in go. Its main benefits over other software workflow management systems are its very low latency and overhead, its high performance at scale, its real-time status updates with a view on all your workflows on one screen, its permanent searchable history of all the commands you have ever run, and its "live" dependencies enabling easy automation of on-going projects. Start up the manager daemon, which gives you a url you can view the web interface on: In addition to the "local" scheduler, which will run your commands on all available cores of the local machine, you can also have it run your commands on your LSF cluster or in your OpenStack environment (where it will scale the number of servers needed up and down automatically). Now, stick the commands you want to run in a text file and: Arbitrarily complex workflows can be formed by specifying command dependencies. Use the --help option of `wr add` for details. wr's core is implemented in the queue package. This is the in-memory job queue that holds commands that still need to be run. Its multiple sub-queues enable certain guarantees: a given command will only get run by a single client at any one time; if a client dies, the command will get run by another client instead; if a command cannot be run, it is buried until the user takes action; if a command has a dependency, it won't run until its dependencies are complete. The jobqueue package provides client+server code for interacting with the in-memory queue from the queue package, and by storing all new commands in an on-disk database, provides an additional guarantee: that (dynamic) workflows won't break because a job that was added got "lost" before it got run. It also retains all completed jobs, enabling searching through of past workflows and allowing for "live" dependencies, triggering the rerunning of previously completed commands if their dependencies change. The jobqueue package is also what actually does the main "work" of the system: the server component knows how many commands need to be run and what their resource requirements (memory, time, cpus etc.) are, and submits the appropriate number of jobqueue runner clients to the job scheduler. The jobqueue/scheduler package has the scheduler-specific code that ensures that these runner clients get run on the configured system in the most efficient way possible. Eg. for LSF, if we have 10 commands that need 2GB of memory to run, we will submit a job array of size 10 with 2GB of memory reservation to LSF. The most limited (and therefore potentially least contended) queue capable of running the commands will be chosen. For OpenStack, the cheapest server (in terms of cores and memory) that can run the commands will be spawned, and once there is no more work to do on those servers, they get terminated to free up resources. The cloud package implements methods for interacting with cloud environments such as OpenStack. The corresponding jobqueue/scheduler package uses these methods to do their work. The static subdirectory contains the html, css and javascript needed for the web interface. See jobqueue/serverWebI.go for how the web interface backend is implemented. The internal package contains general utility functions, and most notably config.go holds the code for how the command line interface deals with config options.
Package goworker is a Resque-compatible, Go-based background worker. It allows you to push jobs into a queue using an expressive language like Ruby while harnessing the efficiency and concurrency of Go to minimize job latency and cost. goworker workers can run alongside Ruby Resque clients so that you can keep all but your most resource-intensive jobs in Ruby. To create a worker, write a function matching the signature and register it using Here is a simple worker that prints its arguments: To create workers that share a database pool or other resources, use a closure to share variables. goworker worker functions receive the queue they are serving and a slice of interfaces. To use them as parameters to other functions, use Go type assertions to convert them into usable types. For testing, it is helpful to use the redis-cli program to insert jobs onto the Redis queue: will insert 100 jobs for the MyClass worker onto the myqueue queue. It is equivalent to: After building your workers, you will have an executable that you can run which will automatically poll a Redis server and call your workers as jobs arrive. There are several flags which control the operation of the goworker client. -queues="comma,delimited,queues" — This is the only required flag. The recommended practice is to separate your Resque workers from your goworkers with different queues. Otherwise, Resque worker classes that have no goworker analog will cause the goworker process to fail the jobs. Because of this, there is no default queue, nor is there a way to select all queues (à la Resque's * queue). Queues are processed in the order they are specififed. If you have multiple queues you can assign them weights. A queue with a weight of 2 will be checked twice as often as a queue with a weight of 1: -queues='high=2,low=1'. -interval=5.0 — Specifies the wait period between polling if no job was in the queue the last time one was requested. -concurrency=25 — Specifies the number of concurrently executing workers. This number can be as low as 1 or rather comfortably as high as 100,000, and should be tuned to your workflow and the availability of outside resources. -connections=2 — Specifies the maximum number of Redis connections that goworker will consume between the poller and all workers. There is not much performance gain over two and a slight penalty when using only one. This is configurable in case you need to keep connection counts low for cloud Redis providers who limit plans on maxclients. -uri=redis://localhost:6379/ — Specifies the URI of the Redis database from which goworker polls for jobs. Accepts URIs of the format redis://user:pass@host:port/db or unix:///path/to/redis.sock. The flag may also be set by the environment variable $($REDIS_PROVIDER) or $REDIS_URL. E.g. set $REDIS_PROVIDER to REDISTOGO_URL on Heroku to let the Redis To Go add-on configure the Redis database. -namespace=resque: — Specifies the namespace from which goworker retrieves jobs and stores stats on workers. -exit-on-complete=false — Exits goworker when there are no jobs left in the queue. This is helpful in conjunction with the time command to benchmark different configurations. -use-number=false — Uses json.Number when decoding numbers in the job payloads. This will avoid issues that occur when goworker and the json package decode large numbers as floats, which then get encoded in scientific notation, losing pecision. This will default to true soon. You can also configure your own flags for use within your workers. Be sure to set them before calling goworker.Main(). It is okay to call flags.Parse() before calling goworker.Main() if you need to do additional processing on your flags. To stop goworker, send a QUIT, TERM, or INT signal to the process. This will immediately stop job polling. There can be up to $CONCURRENCY jobs currently running, which will continue to run until they are finished. Like Resque, goworker makes no guarantees about the safety of jobs in the event of process shutdown. Workers must be both idempotent and tolerant to loss of the job in the event of failure. If the process is killed with a KILL or by a system failure, there may be one job that is currently in the poller's buffer that will be lost without any representation in either the queue or the worker variable. If you are running Goworker on a system like Heroku, which sends a TERM to signal a process that it needs to stop, ten seconds later sends a KILL to force the process to stop, your jobs must finish within 10 seconds or they may be lost. Jobs will be recoverable from the Redis database under as a JSON object with keys queue, run_at, and payload, but the process is manual. Additionally, there is no guarantee that the job in Redis under the worker key has not finished, if the process is killed before goworker can flush the update to Redis.
Package goworker is a Resque-compatible, Go-based background worker. It allows you to push jobs into a queue using an expressive language like Ruby while harnessing the efficiency and concurrency of Go to minimize job latency and cost. goworker workers can run alongside Ruby Resque clients so that you can keep all but your most resource-intensive jobs in Ruby. To create a worker, write a function matching the signature and register it using Here is a simple worker that prints its arguments: To create workers that share a database pool or other resources, use a closure to share variables. goworker worker functions receive the queue they are serving and a slice of interfaces. To use them as parameters to other functions, use Go type assertions to convert them into usable types. For testing, it is helpful to use the redis-cli program to insert jobs onto the Redis queue: will insert 100 jobs for the MyClass worker onto the myqueue queue. It is equivalent to: After building your workers, you will have an executable that you can run which will automatically poll a Redis server and call your workers as jobs arrive. There are several flags which control the operation of the goworker client. -queues="comma,delimited,queues" — This is the only required flag. The recommended practice is to separate your Resque workers from your goworkers with different queues. Otherwise, Resque worker classes that have no goworker analog will cause the goworker process to fail the jobs. Because of this, there is no default queue, nor is there a way to select all queues (à la Resque's * queue). Queues are processed in the order they are specififed. If you have multiple queues you can assign them weights. A queue with a weight of 2 will be checked twice as often as a queue with a weight of 1: -queues='high=2,low=1'. -interval=5.0 — Specifies the wait period between polling if no job was in the queue the last time one was requested. -concurrency=25 — Specifies the number of concurrently executing workers. This number can be as low as 1 or rather comfortably as high as 100,000, and should be tuned to your workflow and the availability of outside resources. -connections=2 — Specifies the maximum number of Redis connections that goworker will consume between the poller and all workers. There is not much performance gain over two and a slight penalty when using only one. This is configurable in case you need to keep connection counts low for cloud Redis providers who limit plans on maxclients. -uri=redis://localhost:6379/ — Specifies the URI of the Redis database from which goworker polls for jobs. Accepts URIs of the format redis://user:pass@host:port/db or unix:///path/to/redis.sock. The flag may also be set by the environment variable $($REDIS_PROVIDER) or $REDIS_URL. E.g. set $REDIS_PROVIDER to REDISTOGO_URL on Heroku to let the Redis To Go add-on configure the Redis database. -namespace=resque: — Specifies the namespace from which goworker retrieves jobs and stores stats on workers. -exit-on-complete=false — Exits goworker when there are no jobs left in the queue. This is helpful in conjunction with the time command to benchmark different configurations. -use-number=false — Uses json.Number when decoding numbers in the job payloads. This will avoid issues that occur when goworker and the json package decode large numbers as floats, which then get encoded in scientific notation, losing pecision. This will default to true soon. You can also configure your own flags for use within your workers. Be sure to set them before calling goworker.Main(). It is okay to call flags.Parse() before calling goworker.Main() if you need to do additional processing on your flags. To stop goworker, send a QUIT, TERM, or INT signal to the process. This will immediately stop job polling. There can be up to $CONCURRENCY jobs currently running, which will continue to run until they are finished. Like Resque, goworker makes no guarantees about the safety of jobs in the event of process shutdown. Workers must be both idempotent and tolerant to loss of the job in the event of failure. If the process is killed with a KILL or by a system failure, there may be one job that is currently in the poller's buffer that will be lost without any representation in either the queue or the worker variable. If you are running Goworker on a system like Heroku, which sends a TERM to signal a process that it needs to stop, ten seconds later sends a KILL to force the process to stop, your jobs must finish within 10 seconds or they may be lost. Jobs will be recoverable from the Redis database under as a JSON object with keys queue, run_at, and payload, but the process is manual. Additionally, there is no guarantee that the job in Redis under the worker key has not finished, if the process is killed before goworker can flush the update to Redis.
Package que-go is a fully interoperable Golang port of Chris Hanks' Ruby Que queueing library for PostgreSQL. Que uses PostgreSQL's advisory locks for speed and reliability. See the original Que documentation for more details: https://github.com/chanks/que Because que-go is an interoperable port of Que, you can enqueue jobs in Ruby (i.e. from a Rails app) and write your workers in Go. Or if you have a limited set of jobs that you want to write in Go, you can leave most of your workers in Ruby and just add a few Go workers on a different queue name. Instead of using database/sql and the more popular pq PostgreSQL driver, this package uses the pgx driver: https://github.com/jackc/pgx Because Que uses session-level advisory locks, we have to hold the same connection throughout the process of getting a job, working it, deleting it, and removing the lock. Pq and the built-in database/sql interfaces do not offer this functionality, so we'd have to implement our own connection pool. Fortunately, pgx already has a perfectly usable one built for us. Even better, it offers better performance than pq due largely to its use of binary encoding. que-go relies on prepared statements for performance. As of now these have to be initialized manually on your connection pool like so: If you have suggestions on how to cleanly do this automatically, please open an issue! Here is a complete example showing worker setup and two jobs enqueued, one with a delay:
Package que-go is a fully interoperable Golang port of Chris Hanks' Ruby Que queueing library for PostgreSQL. Que uses PostgreSQL's advisory locks for speed and reliability. See the original Que documentation for more details: https://github.com/chanks/que Because que-go is an interoperable port of Que, you can enqueue jobs in Ruby (i.e. from a Rails app) and write your workers in Go. Or if you have a limited set of jobs that you want to write in Go, you can leave most of your workers in Ruby and just add a few Go workers on a different queue name. Instead of using database/sql and the more popular pq PostgreSQL driver, this package uses the pgx driver: https://github.com/jackc/pgx Because Que uses session-level advisory locks, we have to hold the same connection throughout the process of getting a job, working it, deleting it, and removing the lock. Pq and the built-in database/sql interfaces do not offer this functionality, so we'd have to implement our own connection pool. Fortunately, pgx already has a perfectly usable one built for us. Even better, it offers better performance than pq due largely to its use of binary encoding. que-go relies on prepared statements for performance. As of now these have to be initialized manually on your connection pool like so: If you have suggestions on how to cleanly do this automatically, please open an issue! Here is a complete example showing worker setup and two jobs enqueued, one with a delay:
Package goworker is a Resque-compatible, Go-based background worker. It allows you to push jobs into a queue using an expressive language like Ruby while harnessing the efficiency and concurrency of Go to minimize job latency and cost. goworker workers can run alongside Ruby Resque clients so that you can keep all but your most resource-intensive jobs in Ruby. To create a worker, write a function matching the signature and register it using Here is a simple worker that prints its arguments: To create workers that share a database pool or other resources, use a closure to share variables. goworker worker functions receive the queue they are serving and a slice of interfaces. To use them as parameters to other functions, use Go type assertions to convert them into usable types. For testing, it is helpful to use the redis-cli program to insert jobs onto the Redis queue: will insert 100 jobs for the MyClass worker onto the myqueue queue. It is equivalent to: After building your workers, you will have an executable that you can run which will automatically poll a Redis server and call your workers as jobs arrive. There are several flags which control the operation of the goworker client. -queues="comma,delimited,queues" — This is the only required flag. The recommended practice is to separate your Resque workers from your goworkers with different queues. Otherwise, Resque worker classes that have no goworker analog will cause the goworker process to fail the jobs. Because of this, there is no default queue, nor is there a way to select all queues (à la Resque's * queue). Queues are processed in the order they are specififed. If you have multiple queues you can assign them weights. A queue with a weight of 2 will be checked twice as often as a queue with a weight of 1: -queues='high=2,low=1'. -interval=5.0 — Specifies the wait period between polling if no job was in the queue the last time one was requested. -concurrency=25 — Specifies the number of concurrently executing workers. This number can be as low as 1 or rather comfortably as high as 100,000, and should be tuned to your workflow and the availability of outside resources. -connections=2 — Specifies the maximum number of Redis connections that goworker will consume between the poller and all workers. There is not much performance gain over two and a slight penalty when using only one. This is configurable in case you need to keep connection counts low for cloud Redis providers who limit plans on maxclients. -uri=redis://localhost:6379/ — Specifies the URI of the Redis database from which goworker polls for jobs. Accepts URIs of the format redis://user:pass@host:port/db or unix:///path/to/redis.sock. The flag may also be set by the environment variable $($REDIS_PROVIDER) or $REDIS_URL. E.g. set $REDIS_PROVIDER to REDISTOGO_URL on Heroku to let the Redis To Go add-on configure the Redis database. -namespace=resque: — Specifies the namespace from which goworker retrieves jobs and stores stats on workers. -exit-on-complete=false — Exits goworker when there are no jobs left in the queue. This is helpful in conjunction with the time command to benchmark different configurations. -use-number=false — Uses json.Number when decoding numbers in the job payloads. This will avoid issues that occur when goworker and the json package decode large numbers as floats, which then get encoded in scientific notation, losing pecision. This will default to true soon. You can also configure your own flags for use within your workers. Be sure to set them before calling goworker.Main(). It is okay to call flags.Parse() before calling goworker.Main() if you need to do additional processing on your flags. To stop goworker, send a QUIT, TERM, or INT signal to the process. This will immediately stop job polling. There can be up to $CONCURRENCY jobs currently running, which will continue to run until they are finished. Like Resque, goworker makes no guarantees about the safety of jobs in the event of process shutdown. Workers must be both idempotent and tolerant to loss of the job in the event of failure. If the process is killed with a KILL or by a system failure, there may be one job that is currently in the poller's buffer that will be lost without any representation in either the queue or the worker variable. If you are running Goworker on a system like Heroku, which sends a TERM to signal a process that it needs to stop, ten seconds later sends a KILL to force the process to stop, your jobs must finish within 10 seconds or they may be lost. Jobs will be recoverable from the Redis database under as a JSON object with keys queue, run_at, and payload, but the process is manual. Additionally, there is no guarantee that the job in Redis under the worker key has not finished, if the process is killed before goworker can flush the update to Redis.
Package goworker is a Resque-compatible, Go-based background worker. It allows you to push jobs into a queue using an expressive language like Ruby while harnessing the efficiency and concurrency of Go to minimize job latency and cost. goworker workers can run alongside Ruby Resque clients so that you can keep all but your most resource-intensive jobs in Ruby. To create a worker, write a function matching the signature and register it using Here is a simple worker that prints its arguments: To create workers that share a database pool or other resources, use a closure to share variables. goworker worker functions receive the queue they are serving and a slice of interfaces. To use them as parameters to other functions, use Go type assertions to convert them into usable types. For testing, it is helpful to use the redis-cli program to insert jobs onto the Redis queue: will insert 100 jobs for the MyClass worker onto the myqueue queue. It is equivalent to: After building your workers, you will have an executable that you can run which will automatically poll a Redis server and call your workers as jobs arrive. There are several flags which control the operation of the goworker client. -queues="comma,delimited,queues" — This is the only required flag. The recommended practice is to separate your Resque workers from your goworkers with different queues. Otherwise, Resque worker classes that have no goworker analog will cause the goworker process to fail the jobs. Because of this, there is no default queue, nor is there a way to select all queues (à la Resque's * queue). Queues are processed in the order they are specififed. If you have multiple queues you can assign them weights. A queue with a weight of 2 will be checked twice as often as a queue with a weight of 1: -queues='high=2,low=1'. -interval=5.0 — Specifies the wait period between polling if no job was in the queue the last time one was requested. -concurrency=25 — Specifies the number of concurrently executing workers. This number can be as low as 1 or rather comfortably as high as 100,000, and should be tuned to your workflow and the availability of outside resources. -connections=2 — Specifies the maximum number of Redis connections that goworker will consume between the poller and all workers. There is not much performance gain over two and a slight penalty when using only one. This is configurable in case you need to keep connection counts low for cloud Redis providers who limit plans on maxclients. -uri=redis://localhost:6379/ — Specifies the URI of the Redis database from which goworker polls for jobs. Accepts URIs of the format redis://user:pass@host:port/db or unix:///path/to/redis.sock. The flag may also be set by the environment variable $($REDIS_PROVIDER) or $REDIS_URL. E.g. set $REDIS_PROVIDER to REDISTOGO_URL on Heroku to let the Redis To Go add-on configure the Redis database. -namespace=resque: — Specifies the namespace from which goworker retrieves jobs and stores stats on workers. -exit-on-complete=false — Exits goworker when there are no jobs left in the queue. This is helpful in conjunction with the time command to benchmark different configurations. -use-number=false — Uses json.Number when decoding numbers in the job payloads. This will avoid issues that occur when goworker and the json package decode large numbers as floats, which then get encoded in scientific notation, losing pecision. This will default to true soon. You can also configure your own flags for use within your workers. Be sure to set them before calling goworker.Main(). It is okay to call flags.Parse() before calling goworker.Main() if you need to do additional processing on your flags. To stop goworker, send a QUIT, TERM, or INT signal to the process. This will immediately stop job polling. There can be up to $CONCURRENCY jobs currently running, which will continue to run until they are finished. Like Resque, goworker makes no guarantees about the safety of jobs in the event of process shutdown. Workers must be both idempotent and tolerant to loss of the job in the event of failure. If the process is killed with a KILL or by a system failure, there may be one job that is currently in the poller's buffer that will be lost without any representation in either the queue or the worker variable. If you are running Goworker on a system like Heroku, which sends a TERM to signal a process that it needs to stop, ten seconds later sends a KILL to force the process to stop, your jobs must finish within 10 seconds or they may be lost. Jobs will be recoverable from the Redis database under as a JSON object with keys queue, run_at, and payload, but the process is manual. Additionally, there is no guarantee that the job in Redis under the worker key has not finished, if the process is killed before goworker can flush the update to Redis.
An AppEngine service that copies files from one CloudStorage location to another and publishes the names of the files (in their new location) to a PubSub topic. This could be used as the first step of a data pipline that brings log files into GCP. An external (to GCP) service would copy the logs into a well known location on CloudStorage. An AppEngine cron job would make a call to this service with the right parameters, which would then move the files to a staging area and publish them to a queue to be consumed by other workers. The handler will listen at: http://PROJECT_ID.appspot.com/tasks/filepublisher The paramters required by the handler defined in this service are: An example call could look like: To run the service locally for development the project ID must be specified in the environment and 'go run' can be used:
goworker is a Resque-compatible, Go-based background worker. It allows you to push jobs into a queue using an expressive language like Ruby while harnessing the efficiency and concurrency of Go to minimize job latency and cost. goworker workers can run alongside Ruby Resque clients so that you can keep all but your most resource-intensive jobs in Ruby. To create a worker, write a function matching the signature and register it using Here is a simple worker that prints its arguments: To create workers that share a database pool or other resources, use a closure to share variables. goworker worker functions receive the queue they are serving and a slice of interfaces. To use them as parameters to other functions, use Go type assertions to convert them into usable types. For testing, it is helpful to use the redis-cli program to insert jobs onto the Redis queue: will insert 100 jobs for the MyClass worker onto the myqueue queue. It is equivalent to: After building your workers, you will have an executable that you can run which will automatically poll a Redis server and call your workers as jobs arrive. There are several flags which control the operation of the goworker client. -queues="comma,delimited,queues" — This is the only required flag. The recommended practice is to separate your Resque workers from your goworkers with different queues. Otherwise, Resque worker classes that have no goworker analog will cause the goworker process to fail the jobs. Because of this, there is no default queue, nor is there a way to select all queues (à la Resque's * queue). Queues are processed in the order they are specififed. If you have multiple queues you can assign them weights. A queue with a weight of 2 will weight of 1: -queues='high=2,low=1'. -interval=5.0 — Specifies the wait period between polling if no job was in the queue the last time one was requested. -concurrency=25 — Specifies the number of concurrently executing workers. This number can be as low as 1 or rather comfortably as high as 100,000, and should be tuned to your workflow and the availability of outside resources. -connections=2 — Specifies the maximum number of Redis connections that goworker will consume between the poller and all workers. There is not much performance gain over two and a slight penalty when using only one. This is configurable in case you need to keep connection counts low for cloud Redis providers who limit plans on maxclients. -uri=redis://localhost:6379/ — Specifies the URI of the Redis database from which goworker polls for jobs. Accepts URIs of the format redis://user:pass@host:port/db or unix:///path/to/redis.sock. The flag may also be set by the environment variable $($REDIS_PROVIDER) or $REDIS_URL. E.g. set $REDIS_PROVIDER to REDISTOGO_URL on Heroku to let the Redis To Go add-on configure the Redis database. -namespace=resque: — Specifies the namespace from which goworker retrieves jobs and stores stats on workers. -exit-on-complete=false — Exits goworker when there are no jobs left in the queue. This is helpful in conjunction with the time command to benchmark different configurations. You can also configure your own flags for use within your workers. Be sure to set them before calling goworker.Main(). It is okay to call flags.Parse() before calling goworker.Main() if you need to do additional processing on your flags. To stop goworker, send a QUIT, TERM, or INT signal to the process. This will immediately stop job polling. There can be up to $CONCURRENCY jobs currently running, which will continue to run until they are finished. Like Resque, goworker makes no guarantees about the safety of jobs in the event of process shutdown. Workers must be both idempotent and tolerant to loss of the job in the event of failure. If the process is killed with a KILL or by a system failure, there may be one job that is currently in the poller's buffer that will be lost without any representation in either the queue or the worker variable. If you are running Goworker on a system like Heroku, which sends a TERM to signal a process that it needs to stop, ten seconds later sends a KILL to force the process to stop, your jobs must finish within 10 seconds or they may be lost. Jobs will be recoverable from the Redis database under as a JSON object with keys queue, run_at, and payload, but the process is manual. Additionally, there is no guarantee that the job in Redis under the worker key has not finished, if the process is killed before goworker can flush the update to Redis.
Package que-go is a fully interoperable Golang port of Chris Hanks' Ruby Que queueing library for PostgreSQL. Que uses PostgreSQL's advisory locks for speed and reliability. See the original Que documentation for more details: https://github.com/chanks/que Because que-go is an interoperable port of Que, you can enqueue jobs in Ruby (i.e. from a Rails app) and write your workers in Go. Or if you have a limited set of jobs that you want to write in Go, you can leave most of your workers in Ruby and just add a few Go workers on a different queue name. Instead of using database/sql and the more popular pq PostgreSQL driver, this package uses the pgx driver: https://github.com/jackc/pgx Because Que uses session-level advisory locks, we have to hold the same connection throughout the process of getting a job, working it, deleting it, and removing the lock. Pq and the built-in database/sql interfaces do not offer this functionality, so we'd have to implement our own connection pool. Fortunately, pgx already has a perfectly usable one built for us. Even better, it offers better performance than pq due largely to its use of binary encoding. que-go relies on prepared statements for performance. As of now these have to be initialized manually on your connection pool like so: If you have suggestions on how to cleanly do this automatically, please open an issue! Here is a complete example showing worker setup and two jobs enqueued, one with a delay:
Package worker implements the core of Worker. The main coordinating component in the core is the Processor, and is a good place to start when exploring the code. It gets the jobs off the job queue and calls the right things in order to run it. The ProcessorPool starts up the required number of Processors to get the concurrency that's wanted for a single Worker instance.
Package goworker is a Resque-compatible, Go-based background worker. It allows you to push jobs into a queue using an expressive language like Ruby while harnessing the efficiency and concurrency of Go to minimize job latency and cost. goworker workers can run alongside Ruby Resque clients so that you can keep all but your most resource-intensive jobs in Ruby. To create a worker, write a function matching the signature and register it using Here is a simple worker that prints its arguments: To create workers that share a database pool or other resources, use a closure to share variables. goworker worker functions receive the queue they are serving and a slice of interfaces. To use them as parameters to other functions, use Go type assertions to convert them into usable types. For testing, it is helpful to use the redis-cli program to insert jobs onto the Redis queue: will insert 100 jobs for the MyClass worker onto the myqueue queue. It is equivalent to: After building your workers, you will have an executable that you can run which will automatically poll a Redis server and call your workers as jobs arrive. There are several flags which control the operation of the goworker client. -queues="comma,delimited,queues" — This is the only required flag. The recommended practice is to separate your Resque workers from your goworkers with different queues. Otherwise, Resque worker classes that have no goworker analog will cause the goworker process to fail the jobs. Because of this, there is no default queue, nor is there a way to select all queues (à la Resque's * queue). Queues are processed in the order they are specififed. If you have multiple queues you can assign them weights. A queue with a weight of 2 will be checked twice as often as a queue with a weight of 1: -queues='high=2,low=1'. -interval=5.0 — Specifies the wait period between polling if no job was in the queue the last time one was requested. -concurrency=25 — Specifies the number of concurrently executing workers. This number can be as low as 1 or rather comfortably as high as 100,000, and should be tuned to your workflow and the availability of outside resources. -connections=2 — Specifies the maximum number of Redis connections that goworker will consume between the poller and all workers. There is not much performance gain over two and a slight penalty when using only one. This is configurable in case you need to keep connection counts low for cloud Redis providers who limit plans on maxclients. -uri=redis://localhost:6379/ — Specifies the URI of the Redis database from which goworker polls for jobs. Accepts URIs of the format redis://user:pass@host:port/db or unix:///path/to/redis.sock. The flag may also be set by the environment variable $($REDIS_PROVIDER) or $REDIS_URL. E.g. set $REDIS_PROVIDER to REDISTOGO_URL on Heroku to let the Redis To Go add-on configure the Redis database. -namespace=resque: — Specifies the namespace from which goworker retrieves jobs and stores stats on workers. -exit-on-complete=false — Exits goworker when there are no jobs left in the queue. This is helpful in conjunction with the time command to benchmark different configurations. -use-number=false — Uses json.Number when decoding numbers in the job payloads. This will avoid issues that occur when goworker and the json package decode large numbers as floats, which then get encoded in scientific notation, losing pecision. This will default to true soon. You can also configure your own flags for use within your workers. Be sure to set them before calling goworker.Main(). It is okay to call flags.Parse() before calling goworker.Main() if you need to do additional processing on your flags. To stop goworker, send a QUIT, TERM, or INT signal to the process. This will immediately stop job polling. There can be up to $CONCURRENCY jobs currently running, which will continue to run until they are finished. Like Resque, goworker makes no guarantees about the safety of jobs in the event of process shutdown. Workers must be both idempotent and tolerant to loss of the job in the event of failure. If the process is killed with a KILL or by a system failure, there may be one job that is currently in the poller's buffer that will be lost without any representation in either the queue or the worker variable. If you are running Goworker on a system like Heroku, which sends a TERM to signal a process that it needs to stop, ten seconds later sends a KILL to force the process to stop, your jobs must finish within 10 seconds or they may be lost. Jobs will be recoverable from the Redis database under as a JSON object with keys queue, run_at, and payload, but the process is manual. Additionally, there is no guarantee that the job in Redis under the worker key has not finished, if the process is killed before goworker can flush the update to Redis.
Package goworker is a Resque-compatible, Go-based background worker. It allows you to push jobs into a queue using an expressive language like Ruby while harnessing the efficiency and concurrency of Go to minimize job latency and cost. goworker workers can run alongside Ruby Resque clients so that you can keep all but your most resource-intensive jobs in Ruby. To create a worker, write a function matching the signature and register it using Here is a simple worker that prints its arguments: To create workers that share a database pool or other resources, use a closure to share variables. Clean up shared resources using the channel provided by the Signals function. goworker worker functions receive the queue they are serving and a slice of interfaces. To use them as parameters to other functions, use Go type assertions to convert them into usable types. For testing, it is helpful to use the redis-cli program to insert jobs onto the Redis queue: will insert 100 jobs for the MyClass worker onto the myqueue queue. It is equivalent to: After building your workers, you will have an executable that you can run which will automatically poll a Redis server and call your workers as jobs arrive. There are several flags which control the operation of the goworker client. -queues="comma,delimited,queues" — This is the only required flag. The recommended practice is to separate your Resque workers from your goworkers with different queues. Otherwise, Resque worker classes that have no goworker analog will cause the goworker process to fail the jobs. Because of this, there is no default queue, nor is there a way to select all queues (à la Resque's * queue). Queues are processed in the order they are specififed. If you have multiple queues you can assign them weights. A queue with a weight of 2 will be checked twice as often as a queue with a weight of 1: -queues='high=2,low=1'. -interval=5.0 — Specifies the wait period between polling if no job was in the queue the last time one was requested. -concurrency=25 — Specifies the number of concurrently executing workers. This number can be as low as 1 or rather comfortably as high as 100,000, and should be tuned to your workflow and the availability of outside resources. -connections=2 — Specifies the maximum number of Redis connections that goworker will consume between the poller and all workers. There is not much performance gain over two and a slight penalty when using only one. This is configurable in case you need to keep connection counts low for cloud Redis providers who limit plans on maxclients. -uri=redis://localhost:6379/ — Specifies the URI of the Redis database from which goworker polls for jobs. Accepts URIs of the format redis://user:pass@host:port/db or unix:///path/to/redis.sock. The flag may also be set by the environment variable $($REDIS_PROVIDER) or $REDIS_URL. E.g. set $REDIS_PROVIDER to REDISTOGO_URL on Heroku to let the Redis To Go add-on configure the Redis database. -namespace=resque: — Specifies the namespace from which goworker retrieves jobs and stores stats on workers. -exit-on-complete=false — Exits goworker when there are no jobs left in the queue. This is helpful in conjunction with the time command to benchmark different configurations. -use-number=false — Uses json.Number when decoding numbers in the job payloads. This will avoid issues that occur when goworker and the json package decode large numbers as floats, which then get encoded in scientific notation, losing pecision. This will default to true soon. -force-prune=false — Will prune all workers that are not inside of the heartbeat set, not just the expired ones. This option is not compatible with older versions of Resque (any port) as older versions may not have heartbeat so this would delete real working workers. You can also configure your own flags for use within your workers. Be sure to set them before calling goworker.Main(). It is okay to call flags.Parse() before calling goworker.Main() if you need to do additional processing on your flags. To stop goworker, send a QUIT, TERM, or INT signal to the process. This will immediately stop job polling. There can be up to $CONCURRENCY jobs currently running, which will continue to run until they are finished. Like Resque, goworker makes no guarantees about the safety of jobs in the event of process shutdown. Workers must be both idempotent and tolerant to loss of the job in the event of failure. If the process is killed with a KILL or by a system failure, there may be one job that is currently in the poller's buffer that will be lost without any representation in either the queue or the worker variable. If you are running Goworker on a system like Heroku, which sends a TERM to signal a process that it needs to stop, ten seconds later sends a KILL to force the process to stop, your jobs must finish within 10 seconds or they may be lost. Jobs will be recoverable from the Redis database under as a JSON object with keys queue, run_at, and payload, but the process is manual. Additionally, there is no guarantee that the job in Redis under the worker key has not finished, if the process is killed before goworker can flush the update to Redis.
Package que-go is a fully interoperable Golang port of Chris Hanks' Ruby Que queueing library for PostgreSQL. Que uses PostgreSQL's advisory locks for speed and reliability. See the original Que documentation for more details: https://github.com/chanks/que Because que-go is an interoperable port of Que, you can enqueue jobs in Ruby (i.e. from a Rails app) and write your workers in Go. Or if you have a limited set of jobs that you want to write in Go, you can leave most of your workers in Ruby and just add a few Go workers on a different queue name. Instead of using database/sql and the more popular pq PostgreSQL driver, this package uses the pgx driver: https://github.com/jackc/pgx Because Que uses session-level advisory locks, we have to hold the same connection throughout the process of getting a job, working it, deleting it, and removing the lock. Pq and the built-in database/sql interfaces do not offer this functionality, so we'd have to implement our own connection pool. Fortunately, pgx already has a perfectly usable one built for us. Even better, it offers better performance than pq due largely to its use of binary encoding. que-go relies on prepared statements for performance. As of now these have to be initialized manually on your connection pool like so: If you have suggestions on how to cleanly do this automatically, please open an issue! Here is a complete example showing worker setup and two jobs enqueued, one with a delay:
goworker is a Resque-compatible, Go-based background worker. It allows you to push jobs into a queue using an expressive language like Ruby while harnessing the efficiency and concurrency of Go to minimize job latency and cost. goworker workers can run alongside Ruby Resque clients so that you can keep all but your most resource-intensive jobs in Ruby. To create a worker, write a function matching the signature and register it using Here is a simple worker that prints its arguments: To create workers that share a database pool or other resources, use a closure to share variables. goworker worker functions receive the queue they are serving and a slice of interfaces. To use them as parameters to other functions, use Go type assertions to convert them into usable types. For testing, it is helpful to use the redis-cli program to insert jobs onto the Redis queue: will insert 100 jobs for the MyClass worker onto the myqueue queue. It is equivalent to: After building your workers, you will have an executable that you can run which will automatically poll a Redis server and call your workers as jobs arrive. There are several flags which control the operation of the goworker client. -queues="comma,delimited,queues" — This is the only required flag. The recommended practice is to separate your Resque workers from your goworkers with different queues. Otherwise, Resque worker classes that have no goworker analog will cause the goworker process to fail the jobs. Because of this, there is no default queue, nor is there a way to select all queues (à la Resque's * queue). Queues are processed in the order they are specififed. If you have multiple queues you can assign them weights. A queue with a weight of 2 will weight of 1: -queues='high=2,low=1'. -interval=5.0 — Specifies the wait period between polling if no job was in the queue the last time one was requested. -concurrency=25 — Specifies the number of concurrently executing workers. This number can be as low as 1 or rather comfortably as high as 100,000, and should be tuned to your workflow and the availability of outside resources. -connections=2 — Specifies the maximum number of Redis connections that goworker will consume between the poller and all workers. There is not much performance gain over two and a slight penalty when using only one. This is configurable in case you need to keep connection counts low for cloud Redis providers who limit plans on maxclients. -uri=redis://localhost:6379/ — Specifies the URI of the Redis database from which goworker polls for jobs. Accepts URIs of the format redis://user:pass@host:port/db or unix:///path/to/redis.sock. The flag may also be set by the environment variable $($REDIS_PROVIDER) or $REDIS_URL. E.g. set $REDIS_PROVIDER to REDISTOGO_URL on Heroku to let the Redis To Go add-on configure the Redis database. -namespace=resque: — Specifies the namespace from which goworker retrieves jobs and stores stats on workers. -exit-on-complete=false — Exits goworker when there are no jobs left in the queue. This is helpful in conjunction with the time command to benchmark different configurations. You can also configure your own flags for use within your workers. Be sure to set them before calling goworker.Main(). It is okay to call flags.Parse() before calling goworker.Main() if you need to do additional processing on your flags. To stop goworker, send a QUIT, TERM, or INT signal to the process. This will immediately stop job polling. There can be up to $CONCURRENCY jobs currently running, which will continue to run until they are finished. Like Resque, goworker makes no guarantees about the safety of jobs in the event of process shutdown. Workers must be both idempotent and tolerant to loss of the job in the event of failure. If the process is killed with a KILL or by a system failure, there may be one job that is currently in the poller's buffer that will be lost without any representation in either the queue or the worker variable. If you are running Goworker on a system like Heroku, which sends a TERM to signal a process that it needs to stop, ten seconds later sends a KILL to force the process to stop, your jobs must finish within 10 seconds or they may be lost. Jobs will be recoverable from the Redis database under as a JSON object with keys queue, run_at, and payload, but the process is manual. Additionally, there is no guarantee that the job in Redis under the worker key has not finished, if the process is killed before goworker can flush the update to Redis.
Package goworker is a Resque-compatible, Go-based background worker. It allows you to push jobs into a queue using an expressive language like Ruby while harnessing the efficiency and concurrency of Go to minimize job latency and cost. goworker workers can run alongside Ruby Resque clients so that you can keep all but your most resource-intensive jobs in Ruby. To create a worker, write a function matching the signature and register it using Here is a simple worker that prints its arguments: To create workers that share a database pool or other resources, use a closure to share variables. goworker worker functions receive the queue they are serving and a slice of interfaces. To use them as parameters to other functions, use Go type assertions to convert them into usable types. For testing, it is helpful to use the redis-cli program to insert jobs onto the Redis queue: will insert 100 jobs for the MyClass worker onto the myqueue queue. It is equivalent to: After building your workers, you will have an executable that you can run which will automatically poll a Redis server and call your workers as jobs arrive. There are several flags which control the operation of the goworker client. -queues="comma,delimited,queues" — This is the only required flag. The recommended practice is to separate your Resque workers from your goworkers with different queues. Otherwise, Resque worker classes that have no goworker analog will cause the goworker process to fail the jobs. Because of this, there is no default queue, nor is there a way to select all queues (à la Resque's * queue). Queues are processed in the order they are specififed. If you have multiple queues you can assign them weights. A queue with a weight of 2 will be checked twice as often as a queue with a weight of 1: -queues='high=2,low=1'. -interval=5.0 — Specifies the wait period between polling if no job was in the queue the last time one was requested. -concurrency=25 — Specifies the number of concurrently executing workers. This number can be as low as 1 or rather comfortably as high as 100,000, and should be tuned to your workflow and the availability of outside resources. -connections=2 — Specifies the maximum number of Redis connections that goworker will consume between the poller and all workers. There is not much performance gain over two and a slight penalty when using only one. This is configurable in case you need to keep connection counts low for cloud Redis providers who limit plans on maxclients. -uri=redis://localhost:6379/ — Specifies the URI of the Redis database from which goworker polls for jobs. Accepts URIs of the format redis://user:pass@host:port/db or unix:///path/to/redis.sock. The flag may also be set by the environment variable $($REDIS_PROVIDER) or $REDIS_URL. E.g. set $REDIS_PROVIDER to REDISTOGO_URL on Heroku to let the Redis To Go add-on configure the Redis database. -namespace=resque: — Specifies the namespace from which goworker retrieves jobs and stores stats on workers. -exit-on-complete=false — Exits goworker when there are no jobs left in the queue. This is helpful in conjunction with the time command to benchmark different configurations. -use-number=false — Uses json.Number when decoding numbers in the job payloads. This will avoid issues that occur when goworker and the json package decode large numbers as floats, which then get encoded in scientific notation, losing pecision. This will default to true soon. You can also configure your own flags for use within your workers. Be sure to set them before calling goworker.Main(). It is okay to call flags.Parse() before calling goworker.Main() if you need to do additional processing on your flags. To stop goworker, send a QUIT, TERM, or INT signal to the process. This will immediately stop job polling. There can be up to $CONCURRENCY jobs currently running, which will continue to run until they are finished. Like Resque, goworker makes no guarantees about the safety of jobs in the event of process shutdown. Workers must be both idempotent and tolerant to loss of the job in the event of failure. If the process is killed with a KILL or by a system failure, there may be one job that is currently in the poller's buffer that will be lost without any representation in either the queue or the worker variable. If you are running Goworker on a system like Heroku, which sends a TERM to signal a process that it needs to stop, ten seconds later sends a KILL to force the process to stop, your jobs must finish within 10 seconds or they may be lost. Jobs will be recoverable from the Redis database under as a JSON object with keys queue, run_at, and payload, but the process is manual. Additionally, there is no guarantee that the job in Redis under the worker key has not finished, if the process is killed before goworker can flush the update to Redis.
goworker is a Resque-compatible, Go-based background worker. It allows you to push jobs into a queue using an expressive language like Ruby while harnessing the efficiency and concurrency of Go to minimize job latency and cost. goworker workers can run alongside Ruby Resque clients so that you can keep all but your most resource-intensive jobs in Ruby. To create a worker, write a function matching the signature and register it using Here is a simple worker that prints its arguments: To create workers that share a database pool or other resources, use a closure to share variables. goworker worker functions receive the queue they are serving and a slice of interfaces. To use them as parameters to other functions, use Go type assertions to convert them into usable types. For testing, it is helpful to use the redis-cli program to insert jobs onto the Redis queue: will insert 100 jobs for the MyClass worker onto the myqueue queue. It is equivalent to: After building your workers, you will have an executable that you can run which will automatically poll a Redis server and call your workers as jobs arrive. There are several flags which control the operation of the goworker client. -queues="comma,delimited,queues" — This is the only required flag. The recommended practice is to separate your Resque workers from your goworkers with different queues. Otherwise, Resque worker classes that have no goworker analog will cause the goworker process to fail the jobs. Because of this, there is no default queue, nor is there a way to select all queues (à la Resque's * queue). Queues are processed in the order they are specififed. If you have multiple queues you can assign them weights. A queue with a weight of 2 will weight of 1: -queues='high=2,low=1'. -interval=5.0 — Specifies the wait period between polling if no job was in the queue the last time one was requested. -concurrency=25 — Specifies the number of concurrently executing workers. This number can be as low as 1 or rather comfortably as high as 100,000, and should be tuned to your workflow and the availability of outside resources. -connections=2 — Specifies the maximum number of Redis connections that goworker will consume between the poller and all workers. There is not much performance gain over two and a slight penalty when using only one. This is configurable in case you need to keep connection counts low for cloud Redis providers who limit plans on maxclients. -uri=redis://localhost:6379/ — Specifies the URI of the Redis database from which goworker polls for jobs. Accepts URIs of the format redis://user:pass@host:port/db or unix:///path/to/redis.sock. The flag may also be set by the environment variable $($REDIS_PROVIDER) or $REDIS_URL. E.g. set $REDIS_PROVIDER to REDISTOGO_URL on Heroku to let the Redis To Go add-on configure the Redis database. -namespace=resque: — Specifies the namespace from which goworker retrieves jobs and stores stats on workers. -exit-on-complete=false — Exits goworker when there are no jobs left in the queue. This is helpful in conjunction with the time command to benchmark different configurations. You can also configure your own flags for use within your workers. Be sure to set them before calling goworker.Main(). It is okay to call flags.Parse() before calling goworker.Main() if you need to do additional processing on your flags. To stop goworker, send a QUIT, TERM, or INT signal to the process. This will immediately stop job polling. There can be up to $CONCURRENCY jobs currently running, which will continue to run until they are finished. Like Resque, goworker makes no guarantees about the safety of jobs in the event of process shutdown. Workers must be both idempotent and tolerant to loss of the job in the event of failure. If the process is killed with a KILL or by a system failure, there may be one job that is currently in the poller's buffer that will be lost without any representation in either the queue or the worker variable. If you are running Goworker on a system like Heroku, which sends a TERM to signal a process that it needs to stop, ten seconds later sends a KILL to force the process to stop, your jobs must finish within 10 seconds or they may be lost. Jobs will be recoverable from the Redis database under as a JSON object with keys queue, run_at, and payload, but the process is manual. Additionally, there is no guarantee that the job in Redis under the worker key has not finished, if the process is killed before goworker can flush the update to Redis.
Package amboy provides basic infrastructure for running and describing tasks and task workflows with, potentially, minimal overhead and additional complexity. Amboy works with 4 basic logical objects: jobs, or descriptions of tasks; runnners, which are responsible for executing tasks; queues, that represent pipelines and offline workflows of tasks (e.g. not real time, processes that run outside of the primary execution path of a program); and dependencies that represent relationships between jobs. The inspiration for amboy was to be able to provide a unified way to define and run jobs, that would feel equally "native" for distributed applications and distributed web application, and move easily between different architectures. While amboy users will generally implement their own Job and dependency implementations, Amboy itself provides several example Queue implementations, as well as several generic examples and prototypes of Job and dependency.Manager objects. Generally speaking you should be able to use included amboy components to provide the queue and runner components, in conjunction with custom and generic job and dependency variations. Consider the following example: The amboy package proves a number of generic methods that, using the Queue.Stats() method, block until all jobs are complete. They provide different semantics, which may be useful in different circumstances. All of these functions wait until the total number of jobs submitted to the queue is equal to the number of completed jobs, and as a result these methods don't prevent other threads from adding jobs to the queue after beginning to wait. Additionally, there are a set of methods that allow callers to wait for a specific job to complete.
Package joli is a simple job processor library. It just provides an easy way to define an N-sized queue and a K-sized worker pool to concurrently run queued jobs. As a simple example:
Package goworker is a Resque-compatible, Go-based background worker. It allows you to push jobs into a queue using an expressive language like Ruby while harnessing the efficiency and concurrency of Go to minimize job latency and cost. goworker workers can run alongside Ruby Resque clients so that you can keep all but your most resource-intensive jobs in Ruby. To create a worker, write a function matching the signature and register it using Here is a simple worker that prints its arguments: To create workers that share a database pool or other resources, use a closure to share variables. goworker worker functions receive the queue they are serving and a slice of interfaces. To use them as parameters to other functions, use Go type assertions to convert them into usable types. For testing, it is helpful to use the redis-cli program to insert jobs onto the Redis queue: will insert 100 jobs for the MyClass worker onto the myqueue queue. It is equivalent to: After building your workers, you will have an executable that you can run which will automatically poll a Redis server and call your workers as jobs arrive. There are several flags which control the operation of the goworker client. -queues="comma,delimited,queues" — This is the only required flag. The recommended practice is to separate your Resque workers from your goworkers with different queues. Otherwise, Resque worker classes that have no goworker analog will cause the goworker process to fail the jobs. Because of this, there is no default queue, nor is there a way to select all queues (à la Resque's * queue). Queues are processed in the order they are specififed. If you have multiple queues you can assign them weights. A queue with a weight of 2 will be checked twice as often as a queue with a weight of 1: -queues='high=2,low=1'. -interval=5.0 — Specifies the wait period between polling if no job was in the queue the last time one was requested. -concurrency=25 — Specifies the number of concurrently executing workers. This number can be as low as 1 or rather comfortably as high as 100,000, and should be tuned to your workflow and the availability of outside resources. -connections=2 — Specifies the maximum number of Redis connections that goworker will consume between the poller and all workers. There is not much performance gain over two and a slight penalty when using only one. This is configurable in case you need to keep connection counts low for cloud Redis providers who limit plans on maxclients. -uri=redis://localhost:6379/ — Specifies the URI of the Redis database from which goworker polls for jobs. Accepts URIs of the format redis://user:pass@host:port/db or unix:///path/to/redis.sock. The flag may also be set by the environment variable $($REDIS_PROVIDER) or $REDIS_URL. E.g. set $REDIS_PROVIDER to REDISTOGO_URL on Heroku to let the Redis To Go add-on configure the Redis database. -namespace=resque: — Specifies the namespace from which goworker retrieves jobs and stores stats on workers. -exit-on-complete=false — Exits goworker when there are no jobs left in the queue. This is helpful in conjunction with the time command to benchmark different configurations. -use-number=false — Uses json.Number when decoding numbers in the job payloads. This will avoid issues that occur when goworker and the json package decode large numbers as floats, which then get encoded in scientific notation, losing pecision. This will default to true soon. You can also configure your own flags for use within your workers. Be sure to set them before calling goworker.Main(). It is okay to call flags.Parse() before calling goworker.Main() if you need to do additional processing on your flags. To stop goworker, send a QUIT, TERM, or INT signal to the process. This will immediately stop job polling. There can be up to $CONCURRENCY jobs currently running, which will continue to run until they are finished. Like Resque, goworker makes no guarantees about the safety of jobs in the event of process shutdown. Workers must be both idempotent and tolerant to loss of the job in the event of failure. If the process is killed with a KILL or by a system failure, there may be one job that is currently in the poller's buffer that will be lost without any representation in either the queue or the worker variable. If you are running Goworker on a system like Heroku, which sends a TERM to signal a process that it needs to stop, ten seconds later sends a KILL to force the process to stop, your jobs must finish within 10 seconds or they may be lost. Jobs will be recoverable from the Redis database under as a JSON object with keys queue, run_at, and payload, but the process is manual. Additionally, there is no guarantee that the job in Redis under the worker key has not finished, if the process is killed before goworker can flush the update to Redis.
Package linda is a background manager to poll jobs from broker and dispatch them to multi workers. Linda Broker provides a unified API across different broker (queue) services. Brokers allow you to defer the processing of a time consuming task. Use ReleaseWithDelay func, you can implement a cron job service. Simple Usage:
Package parallelizer is a library for enabling the addition of controlled parallelization utilizing a pool of worker goroutines in a simple manner. This is not intended as an external job queue, where outside programs may submit jobs, although it could easily be used to implement such a tool. The parallelizer package provides a Runner interface, which is for client applications to implement. Instances of the Runner interface may then be passed to the constructor functions NewSynchronousWorker or NewParallelWorker, which construct objects conforming to the Worker interface. Data items may then be passed to the Worker instances via the Worker.Call method, and the processing completed and the final result obtained by calling Worker.Wait. A Runner implementation must provide a Runner.Run method, which will actually process the data in a goroutine and return a result; the result is then passed to the Runner.Integrate method, which is run synchronously with other Runner.Integrate calls, and which can submit additional data items for processing. Once all data is processed, and the client code has called Worker.Wait, the Worker will call the Runner.Result method to obtain the result. The Runner.Result method will be called exactly once; the returned value is cached in the Worker to be returned by future calls to Worker.Wait. The Worker.Call method may not be called again after Worker.Wait has been called. The parallelizer package also provides a Doer interface, which is for client applications to implement. Instances of the Doer interface may then be passed to the constructor function NewSerializer, which constructs objects conforming to the Serializer interface. Data items may then be passed to the Serializer objects to be executed via Doer.Do in a synchronous manner without necessarily blocking the calling goroutine. A Doer implementation must provide a Doer.Do method, which will actually process the data in a separate goroutine; each call will be executed synchronously, so thread-safety in Doer.Do is not a concern. When the code using the wrapping Serializer is done, it will call Serializer.Wait, which will call the Doer.Finish method and return its result to the caller. Note that none of the Serializer.Call methods may be called again after calling Serializer.Wait.
Package mongoqueue provides a job queue, which uses Mongo as a backend storage engine. It supports a sophisticated feature set, facilitating fine-grained job queueing. See: https://github.com/alouca/MongoQueue
Package goworker is a Resque-compatible, Go-based background worker. It allows you to push jobs into a queue using an expressive language like Ruby while harnessing the efficiency and concurrency of Go to minimize job latency and cost. goworker workers can run alongside Ruby Resque clients so that you can keep all but your most resource-intensive jobs in Ruby. To create a worker, write a function matching the signature and register it using Here is a simple worker that prints its arguments: To create workers that share a database pool or other resources, use a closure to share variables. goworker worker functions receive the queue they are serving and a slice of interfaces. To use them as parameters to other functions, use Go type assertions to convert them into usable types. For testing, it is helpful to use the redis-cli program to insert jobs onto the Redis queue: will insert 100 jobs for the MyClass worker onto the myqueue queue. It is equivalent to: After building your workers, you will have an executable that you can run which will automatically poll a Redis server and call your workers as jobs arrive. There are several flags which control the operation of the goworker client. -queues="comma,delimited,queues" — This is the only required flag. The recommended practice is to separate your Resque workers from your goworkers with different queues. Otherwise, Resque worker classes that have no goworker analog will cause the goworker process to fail the jobs. Because of this, there is no default queue, nor is there a way to select all queues (à la Resque's * queue). Queues are processed in the order they are specififed. If you have multiple queues you can assign them weights. A queue with a weight of 2 will be checked twice as often as a queue with a weight of 1: -queues='high=2,low=1'. -interval=5.0 — Specifies the wait period between polling if no job was in the queue the last time one was requested. -concurrency=25 — Specifies the number of concurrently executing workers. This number can be as low as 1 or rather comfortably as high as 100,000, and should be tuned to your workflow and the availability of outside resources. -connections=2 — Specifies the maximum number of Redis connections that goworker will consume between the poller and all workers. There is not much performance gain over two and a slight penalty when using only one. This is configurable in case you need to keep connection counts low for cloud Redis providers who limit plans on maxclients. -uri=redis://localhost:6379/ — Specifies the URI of the Redis database from which goworker polls for jobs. Accepts URIs of the format redis://user:pass@host:port/db or unix:///path/to/redis.sock. The flag may also be set by the environment variable $($REDIS_PROVIDER) or $REDIS_URL. E.g. set $REDIS_PROVIDER to REDISTOGO_URL on Heroku to let the Redis To Go add-on configure the Redis database. -namespace=resque: — Specifies the namespace from which goworker retrieves jobs and stores stats on workers. -exit-on-complete=false — Exits goworker when there are no jobs left in the queue. This is helpful in conjunction with the time command to benchmark different configurations. -use-number=false — Uses json.Number when decoding numbers in the job payloads. This will avoid issues that occur when goworker and the json package decode large numbers as floats, which then get encoded in scientific notation, losing pecision. This will default to true soon. You can also configure your own flags for use within your workers. Be sure to set them before calling goworker.Main(). It is okay to call flags.Parse() before calling goworker.Main() if you need to do additional processing on your flags. To stop goworker, send a QUIT, TERM, or INT signal to the process. This will immediately stop job polling. There can be up to $CONCURRENCY jobs currently running, which will continue to run until they are finished. Like Resque, goworker makes no guarantees about the safety of jobs in the event of process shutdown. Workers must be both idempotent and tolerant to loss of the job in the event of failure. If the process is killed with a KILL or by a system failure, there may be one job that is currently in the poller's buffer that will be lost without any representation in either the queue or the worker variable. If you are running Goworker on a system like Heroku, which sends a TERM to signal a process that it needs to stop, ten seconds later sends a KILL to force the process to stop, your jobs must finish within 10 seconds or they may be lost. Jobs will be recoverable from the Redis database under as a JSON object with keys queue, run_at, and payload, but the process is manual. Additionally, there is no guarantee that the job in Redis under the worker key has not finished, if the process is killed before goworker can flush the update to Redis.
Package goworker is a Resque-compatible, Go-based background worker. It allows you to push jobs into a queue using an expressive language like Ruby while harnessing the efficiency and concurrency of Go to minimize job latency and cost. goworker workers can run alongside Ruby Resque clients so that you can keep all but your most resource-intensive jobs in Ruby. To create a worker, write a function matching the signature and register it using Here is a simple worker that prints its arguments: To create workers that share a database pool or other resources, use a closure to share variables. goworker worker functions receive the queue they are serving and a slice of interfaces. To use them as parameters to other functions, use Go type assertions to convert them into usable types. For testing, it is helpful to use the redis-cli program to insert jobs onto the Redis queue: will insert 100 jobs for the MyClass worker onto the myqueue queue. It is equivalent to: After building your workers, you will have an executable that you can run which will automatically poll a Redis server and call your workers as jobs arrive. There are several flags which control the operation of the goworker client. -queues="comma,delimited,queues" — This is the only required flag. The recommended practice is to separate your Resque workers from your goworkers with different queues. Otherwise, Resque worker classes that have no goworker analog will cause the goworker process to fail the jobs. Because of this, there is no default queue, nor is there a way to select all queues (à la Resque's * queue). Queues are processed in the order they are specififed. If you have multiple queues you can assign them weights. A queue with a weight of 2 will be checked twice as often as a queue with a weight of 1: -queues='high=2,low=1'. -interval=5.0 — Specifies the wait period between polling if no job was in the queue the last time one was requested. -concurrency=25 — Specifies the number of concurrently executing workers. This number can be as low as 1 or rather comfortably as high as 100,000, and should be tuned to your workflow and the availability of outside resources. -connections=2 — Specifies the maximum number of Redis connections that goworker will consume between the poller and all workers. There is not much performance gain over two and a slight penalty when using only one. This is configurable in case you need to keep connection counts low for cloud Redis providers who limit plans on maxclients. -uri=redis://localhost:6379/ — Specifies the URI of the Redis database from which goworker polls for jobs. Accepts URIs of the format redis://user:pass@host:port/db or unix:///path/to/redis.sock. The flag may also be set by the environment variable $($REDIS_PROVIDER) or $REDIS_URL. E.g. set $REDIS_PROVIDER to REDISTOGO_URL on Heroku to let the Redis To Go add-on configure the Redis database. -namespace=resque: — Specifies the namespace from which goworker retrieves jobs and stores stats on workers. -exit-on-complete=false — Exits goworker when there are no jobs left in the queue. This is helpful in conjunction with the time command to benchmark different configurations. -use-number=false — Uses json.Number when decoding numbers in the job payloads. This will avoid issues that occur when goworker and the json package decode large numbers as floats, which then get encoded in scientific notation, losing pecision. This will default to true soon. You can also configure your own flags for use within your workers. Be sure to set them before calling goworker.Main(). It is okay to call flags.Parse() before calling goworker.Main() if you need to do additional processing on your flags. To stop goworker, send a QUIT, TERM, or INT signal to the process. This will immediately stop job polling. There can be up to $CONCURRENCY jobs currently running, which will continue to run until they are finished. Like Resque, goworker makes no guarantees about the safety of jobs in the event of process shutdown. Workers must be both idempotent and tolerant to loss of the job in the event of failure. If the process is killed with a KILL or by a system failure, there may be one job that is currently in the poller's buffer that will be lost without any representation in either the queue or the worker variable. If you are running Goworker on a system like Heroku, which sends a TERM to signal a process that it needs to stop, ten seconds later sends a KILL to force the process to stop, your jobs must finish within 10 seconds or they may be lost. Jobs will be recoverable from the Redis database under as a JSON object with keys queue, run_at, and payload, but the process is manual. Additionally, there is no guarantee that the job in Redis under the worker key has not finished, if the process is killed before goworker can flush the update to Redis.
Package goworker is a Resque-compatible, Go-based background worker. It allows you to push jobs into a queue using an expressive language like Ruby while harnessing the efficiency and concurrency of Go to minimize job latency and cost. goworker workers can run alongside Ruby Resque clients so that you can keep all but your most resource-intensive jobs in Ruby. To create a worker, write a function matching the signature and register it using Here is a simple worker that prints its arguments: To create workers that share a database pool or other resources, use a closure to share variables. goworker worker functions receive the queue they are serving and a slice of interfaces. To use them as parameters to other functions, use Go type assertions to convert them into usable types. For testing, it is helpful to use the redis-cli program to insert jobs onto the Redis queue: will insert 100 jobs for the MyClass worker onto the myqueue queue. It is equivalent to: After building your workers, you will have an executable that you can run which will automatically poll a Redis server and call your workers as jobs arrive. There are several flags which control the operation of the goworker client. -queues="comma,delimited,queues" — This is the only required flag. The recommended practice is to separate your Resque workers from your goworkers with different queues. Otherwise, Resque worker classes that have no goworker analog will cause the goworker process to fail the jobs. Because of this, there is no default queue, nor is there a way to select all queues (à la Resque's * queue). Queues are processed in the order they are specififed. If you have multiple queues you can assign them weights. A queue with a weight of 2 will be checked twice as often as a queue with a weight of 1: -queues='high=2,low=1'. -interval=5.0 — Specifies the wait period between polling if no job was in the queue the last time one was requested. -concurrency=25 — Specifies the number of concurrently executing workers. This number can be as low as 1 or rather comfortably as high as 100,000, and should be tuned to your workflow and the availability of outside resources. -connections=2 — Specifies the maximum number of Redis connections that goworker will consume between the poller and all workers. There is not much performance gain over two and a slight penalty when using only one. This is configurable in case you need to keep connection counts low for cloud Redis providers who limit plans on maxclients. -uri=redis://localhost:6379/ — Specifies the URI of the Redis database from which goworker polls for jobs. Accepts URIs of the format redis://user:pass@host:port/db or unix:///path/to/redis.sock. The flag may also be set by the environment variable $($REDIS_PROVIDER) or $REDIS_URL. E.g. set $REDIS_PROVIDER to REDISTOGO_URL on Heroku to let the Redis To Go add-on configure the Redis database. -namespace=resque: — Specifies the namespace from which goworker retrieves jobs and stores stats on workers. -exit-on-complete=false — Exits goworker when there are no jobs left in the queue. This is helpful in conjunction with the time command to benchmark different configurations. -use-number=false — Uses json.Number when decoding numbers in the job payloads. This will avoid issues that occur when goworker and the json package decode large numbers as floats, which then get encoded in scientific notation, losing pecision. This will default to true soon. You can also configure your own flags for use within your workers. Be sure to set them before calling goworker.Main(). It is okay to call flags.Parse() before calling goworker.Main() if you need to do additional processing on your flags. To stop goworker, send a QUIT, TERM, or INT signal to the process. This will immediately stop job polling. There can be up to $CONCURRENCY jobs currently running, which will continue to run until they are finished. Like Resque, goworker makes no guarantees about the safety of jobs in the event of process shutdown. Workers must be both idempotent and tolerant to loss of the job in the event of failure. If the process is killed with a KILL or by a system failure, there may be one job that is currently in the poller's buffer that will be lost without any representation in either the queue or the worker variable. If you are running Goworker on a system like Heroku, which sends a TERM to signal a process that it needs to stop, ten seconds later sends a KILL to force the process to stop, your jobs must finish within 10 seconds or they may be lost. Jobs will be recoverable from the Redis database under as a JSON object with keys queue, run_at, and payload, but the process is manual. Additionally, there is no guarantee that the job in Redis under the worker key has not finished, if the process is killed before goworker can flush the update to Redis.
Package goworker is a Resque-compatible, Go-based background worker. It allows you to push jobs into a queue using an expressive language like Ruby while harnessing the efficiency and concurrency of Go to minimize job latency and cost. goworker workers can run alongside Ruby Resque clients so that you can keep all but your most resource-intensive jobs in Ruby. To create a worker, write a function matching the signature and register it using Here is a simple worker that prints its arguments: To create workers that share a database pool or other resources, use a closure to share variables. goworker worker functions receive the queue they are serving and a slice of interfaces. To use them as parameters to other functions, use Go type assertions to convert them into usable types. For testing, it is helpful to use the redis-cli program to insert jobs onto the Redis queue: will insert 100 jobs for the MyClass worker onto the myqueue queue. It is equivalent to: After building your workers, you will have an executable that you can run which will automatically poll a Redis server and call your workers as jobs arrive. There are several flags which control the operation of the goworker client. -queues="comma,delimited,queues" — This is the only required flag. The recommended practice is to separate your Resque workers from your goworkers with different queues. Otherwise, Resque worker classes that have no goworker analog will cause the goworker process to fail the jobs. Because of this, there is no default queue, nor is there a way to select all queues (à la Resque's * queue). Queues are processed in the order they are specififed. If you have multiple queues you can assign them weights. A queue with a weight of 2 will be checked twice as often as a queue with a weight of 1: -queues='high=2,low=1'. -interval=5.0 — Specifies the wait period between polling if no job was in the queue the last time one was requested. -concurrency=25 — Specifies the number of concurrently executing workers. This number can be as low as 1 or rather comfortably as high as 100,000, and should be tuned to your workflow and the availability of outside resources. -connections=2 — Specifies the maximum number of Redis connections that goworker will consume between the poller and all workers. There is not much performance gain over two and a slight penalty when using only one. This is configurable in case you need to keep connection counts low for cloud Redis providers who limit plans on maxclients. -uri=redis://localhost:6379/ — Specifies the URI of the Redis database from which goworker polls for jobs. Accepts URIs of the format redis://user:pass@host:port/db or unix:///path/to/redis.sock. The flag may also be set by the environment variable $($REDIS_PROVIDER) or $REDIS_URL. E.g. set $REDIS_PROVIDER to REDISTOGO_URL on Heroku to let the Redis To Go add-on configure the Redis database. -namespace=resque: — Specifies the namespace from which goworker retrieves jobs and stores stats on workers. -exit-on-complete=false — Exits goworker when there are no jobs left in the queue. This is helpful in conjunction with the time command to benchmark different configurations. -use-number=false — Uses json.Number when decoding numbers in the job payloads. This will avoid issues that occur when goworker and the json package decode large numbers as floats, which then get encoded in scientific notation, losing pecision. This will default to true soon. You can also configure your own flags for use within your workers. Be sure to set them before calling goworker.Main(). It is okay to call flags.Parse() before calling goworker.Main() if you need to do additional processing on your flags. To stop goworker, send a QUIT, TERM, or INT signal to the process. This will immediately stop job polling. There can be up to $CONCURRENCY jobs currently running, which will continue to run until they are finished. Like Resque, goworker makes no guarantees about the safety of jobs in the event of process shutdown. Workers must be both idempotent and tolerant to loss of the job in the event of failure. If the process is killed with a KILL or by a system failure, there may be one job that is currently in the poller's buffer that will be lost without any representation in either the queue or the worker variable. If you are running Goworker on a system like Heroku, which sends a TERM to signal a process that it needs to stop, ten seconds later sends a KILL to force the process to stop, your jobs must finish within 10 seconds or they may be lost. Jobs will be recoverable from the Redis database under as a JSON object with keys queue, run_at, and payload, but the process is manual. Additionally, there is no guarantee that the job in Redis under the worker key has not finished, if the process is killed before goworker can flush the update to Redis.