Package wire contains directives for Wire code generation. For an overview of working with Wire, see the user guide at https://github.com/google/wire/blob/master/docs/guide.md The directives in this package are used as input to the Wire code generation tool. The entry point of Wire's analysis are injector functions: function templates denoted by only containing a call to Build. The arguments to Build describes a set of providers and the Wire code generation tool builds a directed acylic graph of the providers' output types. The generated code will fill in the function template by using the providers from the provider set to instantiate any needed types.
Package gopacket provides packet decoding for the Go language. gopacket contains many sub-packages with additional functionality you may find useful, including: Also, if you're looking to dive right into code, see the examples subdirectory for numerous simple binaries built using gopacket libraries. Minimum go version required is 1.5 except for pcapgo/EthernetHandle, afpacket, and bsdbpf which need at least 1.7 due to x/sys/unix dependencies. gopacket takes in packet data as a []byte and decodes it into a packet with a non-zero number of "layers". Each layer corresponds to a protocol within the bytes. Once a packet has been decoded, the layers of the packet can be requested from the packet. Packets can be decoded from a number of starting points. Many of our base types implement Decoder, which allow us to decode packets for which we don't have full data. Most of the time, you won't just have a []byte of packet data lying around. Instead, you'll want to read packets in from somewhere (file, interface, etc) and process them. To do that, you'll want to build a PacketSource. First, you'll need to construct an object that implements the PacketDataSource interface. There are implementations of this interface bundled with gopacket in the gopacket/pcap and gopacket/pfring subpackages... see their documentation for more information on their usage. Once you have a PacketDataSource, you can pass it into NewPacketSource, along with a Decoder of your choice, to create a PacketSource. Once you have a PacketSource, you can read packets from it in multiple ways. See the docs for PacketSource for more details. The easiest method is the Packets function, which returns a channel, then asynchronously writes new packets into that channel, closing the channel if the packetSource hits an end-of-file. You can change the decoding options of the packetSource by setting fields in packetSource.DecodeOptions... see the following sections for more details. gopacket optionally decodes packet data lazily, meaning it only decodes a packet layer when it needs to handle a function call. Lazily-decoded packets are not concurrency-safe. Since layers have not all been decoded, each call to Layer() or Layers() has the potential to mutate the packet in order to decode the next layer. If a packet is used in multiple goroutines concurrently, don't use gopacket.Lazy. Then gopacket will decode the packet fully, and all future function calls won't mutate the object. By default, gopacket will copy the slice passed to NewPacket and store the copy within the packet, so future mutations to the bytes underlying the slice don't affect the packet and its layers. If you can guarantee that the underlying slice bytes won't be changed, you can use NoCopy to tell gopacket.NewPacket, and it'll use the passed-in slice itself. The fastest method of decoding is to use both Lazy and NoCopy, but note from the many caveats above that for some implementations either or both may be dangerous. During decoding, certain layers are stored in the packet as well-known layer types. For example, IPv4 and IPv6 are both considered NetworkLayer layers, while TCP and UDP are both TransportLayer layers. We support 4 layers, corresponding to the 4 layers of the TCP/IP layering scheme (roughly anagalous to layers 2, 3, 4, and 7 of the OSI model). To access these, you can use the packet.LinkLayer, packet.NetworkLayer, packet.TransportLayer, and packet.ApplicationLayer functions. Each of these functions returns a corresponding interface (gopacket.{Link,Network,Transport,Application}Layer). The first three provide methods for getting src/dst addresses for that particular layer, while the final layer provides a Payload function to get payload data. This is helpful, for example, to get payloads for all packets regardless of their underlying data type: A particularly useful layer is ErrorLayer, which is set whenever there's an error parsing part of the packet. Note that we don't return an error from NewPacket because we may have decoded a number of layers successfully before running into our erroneous layer. You may still be able to get your Ethernet and IPv4 layers correctly, even if your TCP layer is malformed. gopacket has two useful objects, Flow and Endpoint, for communicating in a protocol independent manner the fact that a packet is coming from A and going to B. The general layer types LinkLayer, NetworkLayer, and TransportLayer all provide methods for extracting their flow information, without worrying about the type of the underlying Layer. A Flow is a simple object made up of a set of two Endpoints, one source and one destination. It details the sender and receiver of the Layer of the Packet. An Endpoint is a hashable representation of a source or destination. For example, for LayerTypeIPv4, an Endpoint contains the IP address bytes for a v4 IP packet. A Flow can be broken into Endpoints, and Endpoints can be combined into Flows: Both Endpoint and Flow objects can be used as map keys, and the equality operator can compare them, so you can easily group together all packets based on endpoint criteria: For load-balancing purposes, both Flow and Endpoint have FastHash() functions, which provide quick, non-cryptographic hashes of their contents. Of particular importance is the fact that Flow FastHash() is symmetric: A->B will have the same hash as B->A. An example usage could be: This allows us to split up a packet stream while still making sure that each stream sees all packets for a flow (and its bidirectional opposite). If your network has some strange encapsulation, you can implement your own decoder. In this example, we handle Ethernet packets which are encapsulated in a 4-byte header. See the docs for Decoder and PacketBuilder for more details on how coding decoders works, or look at RegisterLayerType and RegisterEndpointType to see how to add layer/endpoint types to gopacket. TLDR: DecodingLayerParser takes about 10% of the time as NewPacket to decode packet data, but only for known packet stacks. Basic decoding using gopacket.NewPacket or PacketSource.Packets is somewhat slow due to its need to allocate a new packet and every respective layer. It's very versatile and can handle all known layer types, but sometimes you really only care about a specific set of layers regardless, so that versatility is wasted. DecodingLayerParser avoids memory allocation altogether by decoding packet layers directly into preallocated objects, which you can then reference to get the packet's information. A quick example: The important thing to note here is that the parser is modifying the passed in layers (eth, ip4, ip6, tcp) instead of allocating new ones, thus greatly speeding up the decoding process. It's even branching based on layer type... it'll handle an (eth, ip4, tcp) or (eth, ip6, tcp) stack. However, it won't handle any other type... since no other decoders were passed in, an (eth, ip4, udp) stack will stop decoding after ip4, and only pass back [LayerTypeEthernet, LayerTypeIPv4] through the 'decoded' slice (along with an error saying it can't decode a UDP packet). Unfortunately, not all layers can be used by DecodingLayerParser... only those implementing the DecodingLayer interface are usable. Also, it's possible to create DecodingLayers that are not themselves Layers... see layers.IPv6ExtensionSkipper for an example of this. By default, DecodingLayerParser uses native map to store and search for a layer to decode. Though being versatile, in some cases this solution may be not so optimal. For example, if you have only few layers faster operations may be provided by sparse array indexing or linear array scan. To accomodate these scenarios, DecodingLayerContainer interface is introduced along with its implementations: DecodingLayerSparse, DecodingLayerArray and DecodingLayerMap. You can specify a container implementation to DecodingLayerParser with SetDecodingLayerContainer method. Example: To skip one level of indirection (though sacrificing some capabilities) you may also use DecodingLayerContainer as a decoding tool as it is. In this case you have to handle unknown layer types and layer panics by yourself. Example: DecodingLayerSparse is the fastest but most effective when LayerType values that layers in use can decode are not large because otherwise that would lead to bigger memory footprint. DecodingLayerArray is very compact and primarily usable if the number of decoding layers is not big (up to ~10-15, but please do your own benchmarks). DecodingLayerMap is the most versatile one and used by DecodingLayerParser by default. Please refer to tests and benchmarks in layers subpackage to further examine usage examples and performance measurements. You may also choose to implement your own DecodingLayerContainer if you want to make use of your own internal packet decoding logic. As well as offering the ability to decode packet data, gopacket will allow you to create packets from scratch, as well. A number of gopacket layers implement the SerializableLayer interface; these layers can be serialized to a []byte in the following manner: SerializeTo PREPENDS the given layer onto the SerializeBuffer, and they treat the current buffer's Bytes() slice as the payload of the serializing layer. Therefore, you can serialize an entire packet by serializing a set of layers in reverse order (Payload, then TCP, then IP, then Ethernet, for example). The SerializeBuffer's SerializeLayers function is a helper that does exactly that. To generate a (empty and useless, because no fields are set) Ethernet(IPv4(TCP(Payload))) packet, for example, you can run: If you use gopacket, you'll almost definitely want to make sure gopacket/layers is imported, since when imported it sets all the LayerType variables and fills in a lot of interesting variables/maps (DecodersByLayerName, etc). Therefore, it's recommended that even if you don't use any layers functions directly, you still import with:
Package swagger (2.0) provides a powerful interface to your API Contains an implementation of Swagger 2.0. It knows how to serialize, deserialize and validate swagger specifications. Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API tooling on the planet, thousands of developers are supporting Swagger in almost every modern programming language and deployment environment. With a Swagger-enabled API, you get interactive documentation, client SDK generation and discoverability. We created Swagger to help fulfill the promise of APIs. Swagger helps companies like Apigee, Getty Images, Intuit, LivingSocial, McKesson, Microsoft, Morningstar, and PayPal build the best possible services with RESTful APIs.Now in version 2.0, Swagger is more enabling than ever. And it's 100% open source software. More detailed documentation is available at https://goswagger.io. Install: The implementation also provides a number of command line tools to help working with swagger. Currently there is a spec validator tool: To generate a server for a swagger spec document: To generate a client for a swagger spec document: To generate a swagger spec document for a go application: There are several other sub commands available for the generate command You're free to add files to the directories the generated code lands in, but the files generated by the generator itself will be regenerated on following generation runs so any changes to those files will be lost. However extra files you create won't be lost so they are safe to use for customizing the application to your needs. To generate a server for a swagger spec document:
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package controllerruntime provides tools to construct Kubernetes-style controllers that manipulate both Kubernetes CRDs and aggregated/built-in Kubernetes APIs. It defines easy helpers for the common use cases when building CRDs, built on top of customizable layers of abstraction. Common cases should be easy, and uncommon cases should be possible. In general, controller-runtime tries to guide users towards Kubernetes controller best-practices. The main entrypoint for controller-runtime is this root package, which contains all of the common types needed to get started building controllers: The examples in this package walk through a basic controller setup. The kubebuilder book (https://book.kubebuilder.io) has some more in-depth walkthroughs. controller-runtime favors structs with sane defaults over constructors, so it's fairly common to see structs being used directly in controller-runtime. A brief-ish walkthrough of the layout of this library can be found below. Each package contains more information about how to use it. Frequently asked questions about using controller-runtime and designing controllers can be found at https://github.com/kubernetes-sigs/controller-runtime/blob/main/FAQ.md. Every controller and webhook is ultimately run by a Manager (pkg/manager). A manager is responsible for running controllers and webhooks, and setting up common dependencies, like shared caches and clients, as well as managing leader election (pkg/leaderelection). Managers are generally configured to gracefully shut down controllers on pod termination by wiring up a signal handler (pkg/manager/signals). Controllers (pkg/controller) use events (pkg/event) to eventually trigger reconcile requests. They may be constructed manually, but are often constructed with a Builder (pkg/builder), which eases the wiring of event sources (pkg/source), like Kubernetes API object changes, to event handlers (pkg/handler), like "enqueue a reconcile request for the object owner". Predicates (pkg/predicate) can be used to filter which events actually trigger reconciles. There are pre-written utilities for the common cases, and interfaces and helpers for advanced cases. Controller logic is implemented in terms of Reconcilers (pkg/reconcile). A Reconciler implements a function which takes a reconcile Request containing the name and namespace of the object to reconcile, reconciles the object, and returns a Response or an error indicating whether to requeue for a second round of processing. Reconcilers use Clients (pkg/client) to access API objects. The default client provided by the manager reads from a local shared cache (pkg/cache) and writes directly to the API server, but clients can be constructed that only talk to the API server, without a cache. The Cache will auto-populate with watched objects, as well as when other structured objects are requested. The default split client does not promise to invalidate the cache during writes (nor does it promise sequential create/get coherence), and code should not assume a get immediately following a create/update will return the updated resource. Caches may also have indexes, which can be created via a FieldIndexer (pkg/client) obtained from the manager. Indexes can used to quickly and easily look up all objects with certain fields set. Reconcilers may retrieve event recorders (pkg/recorder) to emit events using the manager. Clients, Caches, and many other things in Kubernetes use Schemes (pkg/scheme) to associate Go types to Kubernetes API Kinds (Group-Version-Kinds, to be specific). Similarly, webhooks (pkg/webhook/admission) may be implemented directly, but are often constructed using a builder (pkg/webhook/admission/builder). They are run via a server (pkg/webhook) which is managed by a Manager. Logging (pkg/log) in controller-runtime is done via structured logs, using a log set of interfaces called logr (https://pkg.go.dev/github.com/go-logr/logr). While controller-runtime provides easy setup for using Zap (https://go.uber.org/zap, pkg/log/zap), you can provide any implementation of logr as the base logger for controller-runtime. Metrics (pkg/metrics) provided by controller-runtime are registered into a controller-runtime-specific Prometheus metrics registry. The manager can serve these by an HTTP endpoint, and additional metrics may be registered to this Registry as normal. You can easily build integration and unit tests for your controllers and webhooks using the test Environment (pkg/envtest). This will automatically stand up a copy of etcd and kube-apiserver, and provide the correct options to connect to the API server. It's designed to work well with the Ginkgo testing framework, but should work with any testing setup. This example creates a simple application Controller that is configured for ReplicaSets and Pods. * Create a new application for ReplicaSets that manages Pods owned by the ReplicaSet and calls into ReplicaSetReconciler. * Start the application. This example creates a simple application Controller that is configured for ExampleCRDWithConfigMapRef CRD. Any change in the configMap referenced in this Custom Resource will cause the re-reconcile of the parent ExampleCRDWithConfigMapRef due to the implementation of the .Watches method of "sigs.k8s.io/controller-runtime/pkg/builder".Builder. This example creates a simple application Controller that is configured for ReplicaSets and Pods. This application controller will be running leader election with the provided configuration in the manager options. If leader election configuration is not provided, controller runs leader election with default values. Default values taken from: https://github.com/kubernetes/component-base/blob/master/config/v1alpha1/defaults.go * defaultLeaseDuration = 15 * time.Second * defaultRenewDeadline = 10 * time.Second * defaultRetryPeriod = 2 * time.Second * Create a new application for ReplicaSets that manages Pods owned by the ReplicaSet and calls into ReplicaSetReconciler. * Start the application.
Package sns provides the API client, operations, and parameter types for Amazon Simple Notification Service. Amazon Simple Notification Service (Amazon SNS) is a web service that enables you to build distributed web-enabled applications. Applications can use Amazon SNS to easily push real-time notification messages to interested subscribers over multiple delivery protocols. For more information about this product see the Amazon SNS product page. For detailed information about Amazon SNS features and their associated API calls, see the Amazon SNS Developer Guide. For information on the permissions you need to use this API, see Identity and access management in Amazon SNS in the Amazon SNS Developer Guide. We also provide SDKs that enable you to access Amazon SNS from your preferred programming language. The SDKs contain functionality that automatically takes care of tasks such as: cryptographically signing your service requests, retrying requests, and handling error responses. For a list of available SDKs, go to Tools for Amazon Web Services.
Gnostic is a tool for building better REST APIs through knowledge. Gnostic reads declarative descriptions of REST APIs that conform to the OpenAPI Specification, reports errors, resolves internal dependencies, and puts the results in a binary form that can be used in any language that is supported by the Protocol Buffer tools. Gnostic models are validated and typed. This allows API tool developers to focus on their product and not worry about input validation and type checking. Gnostic calls plugins that implement a variety of API implementation and support features including generation of client and server support code.
Gnostic is a tool for building better REST APIs through knowledge. Gnostic reads declarative descriptions of REST APIs that conform to the OpenAPI Specification, reports errors, resolves internal dependencies, and puts the results in a binary form that can be used in any language that is supported by the Protocol Buffer tools. Gnostic models are validated and typed. This allows API tool developers to focus on their product and not worry about input validation and type checking. Gnostic calls plugins that implement a variety of API implementation and support features including generation of client and server support code.
Package bluemonday provides a way of describing an allowlist of HTML elements and attributes as a policy, and for that policy to be applied to untrusted strings from users that may contain markup. All elements and attributes not on the allowlist will be stripped. The default bluemonday.UGCPolicy().Sanitize() turns this: Into the more harmless: And it turns this: Into this: Whilst still allowing this: To pass through mostly unaltered (it gained a rel="nofollow"): The primary purpose of bluemonday is to take potentially unsafe user generated content (from things like Markdown, HTML WYSIWYG tools, etc) and make it safe for you to put on your website. It protects sites against XSS (http://en.wikipedia.org/wiki/Cross-site_scripting) and other malicious content that a user interface may deliver. There are many vectors for an XSS attack (https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet) and the safest thing to do is to sanitize user input against a known safe list of HTML elements and attributes. Note: You should always run bluemonday after any other processing. If you use blackfriday (https://github.com/russross/blackfriday) or Pandoc (http://johnmacfarlane.net/pandoc/) then bluemonday should be run after these steps. This ensures that no insecure HTML is introduced later in your process. bluemonday is heavily inspired by both the OWASP Java HTML Sanitizer (https://code.google.com/p/owasp-java-html-sanitizer/) and the HTML Purifier (http://htmlpurifier.org/). We ship two default policies, one is bluemonday.StrictPolicy() and can be thought of as equivalent to stripping all HTML elements and their attributes as it has nothing on its allowlist. The other is bluemonday.UGCPolicy() and allows a broad selection of HTML elements and attributes that are safe for user generated content. Note that this policy does not allow iframes, object, embed, styles, script, etc. The essence of building a policy is to determine which HTML elements and attributes are considered safe for your scenario. OWASP provide an XSS prevention cheat sheet ( https://www.google.com/search?q=xss+prevention+cheat+sheet ) to help explain the risks, but essentially:
Command godep helps build packages reproducibly by fixing their dependencies. Save currently-used dependencies to file Godeps: Build project using saved dependencies: or
Package cloudtrail provides the API client, operations, and parameter types for AWS CloudTrail. This is the CloudTrail API Reference. It provides descriptions of actions, data types, common parameters, and common errors for CloudTrail. CloudTrail is a web service that records Amazon Web Services API calls for your Amazon Web Services account and delivers log files to an Amazon S3 bucket. The recorded information includes the identity of the user, the start time of the Amazon Web Services API call, the source IP address, the request parameters, and the response elements returned by the service. As an alternative to the API, you can use one of the Amazon Web Services SDKs, which consist of libraries and sample code for various programming languages and platforms (Java, Ruby, .NET, iOS, Android, etc.). The SDKs provide programmatic access to CloudTrail. For example, the SDKs handle cryptographically signing requests, managing errors, and retrying requests automatically. For more information about the Amazon Web Services SDKs, including how to download and install them, see Tools to Build on Amazon Web Services. See the CloudTrail User Guide for information about the data that is included with each Amazon Web Services API call listed in the log files.
Package codebuild provides the API client, operations, and parameter types for AWS CodeBuild. CodeBuild is a fully managed build service in the cloud. CodeBuild compiles your source code, runs unit tests, and produces artifacts that are ready to deploy. CodeBuild eliminates the need to provision, manage, and scale your own build servers. It provides prepackaged build environments for the most popular programming languages and build tools, such as Apache Maven, Gradle, and more. You can also fully customize build environments in CodeBuild to use your own build tools. CodeBuild scales automatically to meet peak build requests. You pay only for the build time you consume. For more information about CodeBuild, see the CodeBuild User Guide.
Package securityhub provides the API client, operations, and parameter types for AWS SecurityHub. Security Hub provides you with a comprehensive view of your security state in Amazon Web Services and helps you assess your Amazon Web Services environment against security industry standards and best practices. Security Hub collects security data across Amazon Web Services accounts, Amazon Web Services services, and supported third-party products and helps you analyze your security trends and identify the highest priority security issues. To help you manage the security state of your organization, Security Hub supports multiple security standards. These include the Amazon Web Services Foundational Security Best Practices (FSBP) standard developed by Amazon Web Services, and external compliance frameworks such as the Center for Internet Security (CIS), the Payment Card Industry Data Security Standard (PCI DSS), and the National Institute of Standards and Technology (NIST). Each standard includes several security controls, each of which represents a security best practice. Security Hub runs checks against security controls and generates control findings to help you assess your compliance against security best practices. In addition to generating control findings, Security Hub also receives findings from other Amazon Web Services services, such as Amazon GuardDuty and Amazon Inspector, and supported third-party products. This gives you a single pane of glass into a variety of security-related issues. You can also send Security Hub findings to other Amazon Web Services services and supported third-party products. Security Hub offers automation features that help you triage and remediate security issues. For example, you can use automation rules to automatically update critical findings when a security check fails. You can also leverage the integration with Amazon EventBridge to trigger automatic responses to specific findings. This guide, the Security Hub API Reference, provides information about the Security Hub API. This includes supported resources, HTTP methods, parameters, and schemas. If you're new to Security Hub, you might find it helpful to also review the Security Hub User Guide. The user guide explains key concepts and provides procedures that demonstrate how to use Security Hub features. It also provides information about topics such as integrating Security Hub with other Amazon Web Services services. In addition to interacting with Security Hub by making calls to the Security Hub API, you can use a current version of an Amazon Web Services command line tool or SDK. Amazon Web Services provides tools and SDKs that consist of libraries and sample code for various languages and platforms, such as PowerShell, Java, Go, Python, C++, and .NET. These tools and SDKs provide convenient, programmatic access to Security Hub and other Amazon Web Services services . They also handle tasks such as signing requests, managing errors, and retrying requests automatically. For information about installing and using the Amazon Web Services tools and SDKs, see Tools to Build on Amazon Web Services. With the exception of operations that are related to central configuration, Security Hub API requests are executed only in the Amazon Web Services Region that is currently active or in the specific Amazon Web Services Region that you specify in your request. Any configuration or settings change that results from the operation is applied only to that Region. To make the same change in other Regions, call the same API operation in each Region in which you want to apply the change. When you use central configuration, API requests for enabling Security Hub, standards, and controls are executed in the home Region and all linked Regions. For a list of central configuration operations, see the Central configuration terms and conceptssection of the Security Hub User Guide. The following throttling limits apply to Security Hub API operations. BatchEnableStandards - RateLimit of 1 request per second. BurstLimit of 1 request per second. GetFindings - RateLimit of 3 requests per second. BurstLimit of 6 requests per second. BatchImportFindings - RateLimit of 10 requests per second. BurstLimit of 30 requests per second. BatchUpdateFindings - RateLimit of 10 requests per second. BurstLimit of 30 requests per second. UpdateStandardsControl - RateLimit of 1 request per second. BurstLimit of 5 requests per second. All other operations - RateLimit of 10 requests per second. BurstLimit of 30 requests per second.
Package cognitoidentityprovider provides the API client, operations, and parameter types for Amazon Cognito Identity Provider. With the Amazon Cognito user pools API, you can configure user pools and authenticate users. To authenticate users from third-party identity providers (IdPs) in this API, you can link IdP users to native user profiles. Learn more about the authentication and authorization of federated users at Adding user pool sign-in through a third partyand in the User pool federation endpoints and hosted UI reference. This API reference provides detailed information about API operations and object types in Amazon Cognito. Along with resource management operations, the Amazon Cognito user pools API includes classes of operations and authorization models for client-side and server-side authentication of users. You can interact with operations in the Amazon Cognito user pools API as any of the following subjects. An administrator who wants to configure user pools, app clients, users, groups, or other user pool functions. A server-side app, like a web application, that wants to use its Amazon Web Services privileges to manage, authenticate, or authorize a user. A client-side app, like a mobile app, that wants to make unauthenticated requests to manage, authenticate, or authorize a user. For more information, see Using the Amazon Cognito user pools API and user pool endpoints in the Amazon Cognito Developer Guide. With your Amazon Web Services SDK, you can build the logic to support operational flows in every use case for this API. You can also make direct REST API requests to Amazon Cognito user pools service endpoints. The following links can get you started with the CognitoIdentityProvider client in other supported Amazon Web Services SDKs. Amazon Web Services Command Line Interface Amazon Web Services SDK for .NET Amazon Web Services SDK for C++ Amazon Web Services SDK for Go Amazon Web Services SDK for Java V2 Amazon Web Services SDK for JavaScript Amazon Web Services SDK for PHP V3 Amazon Web Services SDK for Python Amazon Web Services SDK for Ruby V3 To get started with an Amazon Web Services SDK, see Tools to Build on Amazon Web Services. For example actions and scenarios, see Code examples for Amazon Cognito Identity Provider using Amazon Web Services SDKs.
Fresh is a command line tool that builds and (re)starts your web application everytime you save a go or template file. If the web framework you are using supports the Fresh runner, it will show build errors on your browser. It currently works with Traffic (https://github.com/pilu/traffic), Martini (https://github.com/codegangsta/martini) and gocraft/web (https://github.com/gocraft/web). Fresh will watch for file events, and every time you create/modifiy/delete a file it will build and restart the application. If `go build` returns an error, it will logs it in the tmp folder. Traffic (https://github.com/pilu/traffic) already has a middleware that shows the content of that file if it is present. This middleware is automatically added if you run a Traffic web app in dev mode with Fresh.
bindata converts any file into managable Go source code. Useful for embedding binary data into a go program. The file data is optionally gzip compressed before being converted to a raw byte slice. The following paragraphs cover some of the customization options which can be specified in the Config struct, which must be passed into the Translate() call. When used with the `Debug` option, the generated code does not actually include the asset data. Instead, it generates function stubs which load the data from the original file on disk. The asset API remains identical between debug and release builds, so your code will not have to change. This is useful during development when you expect the assets to change often. The host application using these assets uses the same API in both cases and will not have to care where the actual data comes from. An example is a Go webserver with some embedded, static web content like HTML, JS and CSS files. While developing it, you do not want to rebuild the whole server and restart it every time you make a change to a bit of javascript. You just want to build and launch the server once. Then just press refresh in the browser to see those changes. Embedding the assets with the `debug` flag allows you to do just that. When you are finished developing and ready for deployment, just re-invoke `go-bindata` without the `-debug` flag. It will now embed the latest version of the assets. The `NoMemCopy` option will alter the way the output file is generated. It will employ a hack that allows us to read the file data directly from the compiled program's `.rodata` section. This ensures that when we call call our generated function, we omit unnecessary memcopies. The downside of this, is that it requires dependencies on the `reflect` and `unsafe` packages. These may be restricted on platforms like AppEngine and thus prevent you from using this mode. Another disadvantage is that the byte slice we create, is strictly read-only. For most use-cases this is not a problem, but if you ever try to alter the returned byte slice, a runtime panic is thrown. Use this mode only on target platforms where memory constraints are an issue. The default behaviour is to use the old code generation method. This prevents the two previously mentioned issues, but will employ at least one extra memcopy and thus increase memory requirements. For instance, consider the following two examples: This would be the default mode, using an extra memcopy but gives a safe implementation without dependencies on `reflect` and `unsafe`: Here is the same functionality, but uses the `.rodata` hack. The byte slice returned from this example can not be written to without generating a runtime error. The NoCompress option indicates that the supplied assets are *not* GZIP compressed before being turned into Go code. The data should still be accessed through a function call, so nothing changes in the API. This feature is useful if you do not care for compression, or the supplied resource is already compressed. Doing it again would not add any value and may even increase the size of the data. The default behaviour of the program is to use compression. The keys used in the `_bindata` map are the same as the input file name passed to `go-bindata`. This includes the path. In most cases, this is not desireable, as it puts potentially sensitive information in your code base. For this purpose, the tool supplies another command line flag `-prefix`. This accepts a portion of a path name, which should be stripped off from the map keys and function names. For example, running without the `-prefix` flag, we get: Running with the `-prefix` flag, we get: With the optional Tags field, you can specify any go build tags that must be fulfilled for the output file to be included in a build. This is useful when including binary data in multiple formats, where the desired format is specified at build time with the appropriate tags. The tags are appended to a `// +build` line in the beginning of the output file and must follow the build tags syntax specified by the go tool.
bindata converts any file into manageable Go source code. Useful for embedding binary data into a go program. The file data is optionally gzip compressed before being converted to a raw byte slice. The following paragraphs cover some of the customization options which can be specified in the Config struct, which must be passed into the Translate() call. When used with the `Debug` option, the generated code does not actually include the asset data. Instead, it generates function stubs which load the data from the original file on disk. The asset API remains identical between debug and release builds, so your code will not have to change. This is useful during development when you expect the assets to change often. The host application using these assets uses the same API in both cases and will not have to care where the actual data comes from. An example is a Go webserver with some embedded, static web content like HTML, JS and CSS files. While developing it, you do not want to rebuild the whole server and restart it every time you make a change to a bit of javascript. You just want to build and launch the server once. Then just press refresh in the browser to see those changes. Embedding the assets with the `debug` flag allows you to do just that. When you are finished developing and ready for deployment, just re-invoke `go-bindata` without the `-debug` flag. It will now embed the latest version of the assets. The `NoMemCopy` option will alter the way the output file is generated. It will employ a hack that allows us to read the file data directly from the compiled program's `.rodata` section. This ensures that when we call call our generated function, we omit unnecessary memcopies. The downside of this, is that it requires dependencies on the `reflect` and `unsafe` packages. These may be restricted on platforms like AppEngine and thus prevent you from using this mode. Another disadvantage is that the byte slice we create, is strictly read-only. For most use-cases this is not a problem, but if you ever try to alter the returned byte slice, a runtime panic is thrown. Use this mode only on target platforms where memory constraints are an issue. The default behaviour is to use the old code generation method. This prevents the two previously mentioned issues, but will employ at least one extra memcopy and thus increase memory requirements. For instance, consider the following two examples: This would be the default mode, using an extra memcopy but gives a safe implementation without dependencies on `reflect` and `unsafe`: Here is the same functionality, but uses the `.rodata` hack. The byte slice returned from this example can not be written to without generating a runtime error. The NoCompress option indicates that the supplied assets are *not* GZIP compressed before being turned into Go code. The data should still be accessed through a function call, so nothing changes in the API. This feature is useful if you do not care for compression, or the supplied resource is already compressed. Doing it again would not add any value and may even increase the size of the data. The default behaviour of the program is to use compression. The keys used in the `_bindata` map are the same as the input file name passed to `go-bindata`. This includes the path. In most cases, this is not desirable, as it puts potentially sensitive information in your code base. For this purpose, the tool supplies another command line flag `-prefix`. This accepts a portion of a path name, which should be stripped off from the map keys and function names. For example, running without the `-prefix` flag, we get: Running with the `-prefix` flag, we get: With the optional Tags field, you can specify any go build tags that must be fulfilled for the output file to be included in a build. This is useful when including binary data in multiple formats, where the desired format is specified at build time with the appropriate tags. The tags are appended to a `// +build` line in the beginning of the output file and must follow the build tags syntax specified by the go tool.
bindata converts any file into managable Go source code. Useful for embedding binary data into a go program. The file data is optionally gzip compressed before being converted to a raw byte slice. The following paragraphs cover some of the customization options which can be specified in the Config struct, which must be passed into the Translate() call. When used with the `Debug` option, the generated code does not actually include the asset data. Instead, it generates function stubs which load the data from the original file on disk. The asset API remains identical between debug and release builds, so your code will not have to change. This is useful during development when you expect the assets to change often. The host application using these assets uses the same API in both cases and will not have to care where the actual data comes from. An example is a Go webserver with some embedded, static web content like HTML, JS and CSS files. While developing it, you do not want to rebuild the whole server and restart it every time you make a change to a bit of javascript. You just want to build and launch the server once. Then just press refresh in the browser to see those changes. Embedding the assets with the `debug` flag allows you to do just that. When you are finished developing and ready for deployment, just re-invoke `go-bindata` without the `-debug` flag. It will now embed the latest version of the assets. The `NoMemCopy` option will alter the way the output file is generated. It will employ a hack that allows us to read the file data directly from the compiled program's `.rodata` section. This ensures that when we call call our generated function, we omit unnecessary memcopies. The downside of this, is that it requires dependencies on the `reflect` and `unsafe` packages. These may be restricted on platforms like AppEngine and thus prevent you from using this mode. Another disadvantage is that the byte slice we create, is strictly read-only. For most use-cases this is not a problem, but if you ever try to alter the returned byte slice, a runtime panic is thrown. Use this mode only on target platforms where memory constraints are an issue. The default behaviour is to use the old code generation method. This prevents the two previously mentioned issues, but will employ at least one extra memcopy and thus increase memory requirements. For instance, consider the following two examples: This would be the default mode, using an extra memcopy but gives a safe implementation without dependencies on `reflect` and `unsafe`: Here is the same functionality, but uses the `.rodata` hack. The byte slice returned from this example can not be written to without generating a runtime error. The NoCompress option indicates that the supplied assets are *not* GZIP compressed before being turned into Go code. The data should still be accessed through a function call, so nothing changes in the API. This feature is useful if you do not care for compression, or the supplied resource is already compressed. Doing it again would not add any value and may even increase the size of the data. The default behaviour of the program is to use compression. The keys used in the `_bindata` map are the same as the input file name passed to `go-bindata`. This includes the path. In most cases, this is not desireable, as it puts potentially sensitive information in your code base. For this purpose, the tool supplies another command line flag `-prefix`. This accepts a portion of a path name, which should be stripped off from the map keys and function names. For example, running without the `-prefix` flag, we get: Running with the `-prefix` flag, we get: With the optional Tags field, you can specify any go build tags that must be fulfilled for the output file to be included in a build. This is useful when including binary data in multiple formats, where the desired format is specified at build time with the appropriate tags. The tags are appended to a `// +build` line in the beginning of the output file and must follow the build tags syntax specified by the go tool.
Package graphql-go-tools is library to create GraphQL services using the go programming language. GraphQL is a query language for APIs and a runtime for fulfilling those queries with your existing data. GraphQL provides a complete and understandable description of the data in your API, gives clients the power to ask for exactly what they need and nothing more, makes it easier to evolve APIs over time, and enables powerful developer tools. Source: https://graphql.org This library is intended to be a set of low level building blocks to write high performance and secure GraphQL applications. Use cases could range from writing layer seven GraphQL proxies, firewalls, caches etc.. You would usually not use this library to write a GraphQL server yourself but to build tools for the GraphQL ecosystem. To achieve this goal the library has zero dependencies at its core functionality. It has a full implementation of the GraphQL AST and supports lexing, parsing, validation, normalization, introspection, query planning as well as query execution etc. With the execution package it's possible to write a fully functional GraphQL server that is capable to mediate between various protocols and formats. In it's current state you can use the following DataSources to resolve fields: - Static data (embed static data into a schema to extend a field in a simple way) - HTTP JSON APIs (combine multiple Restful APIs into one single GraphQL Endpoint, nesting is possible) - GraphQL APIs (you can combine multiple GraphQL APIs into one single GraphQL Endpoint, nesting is possible) - Webassembly/WASM Lambdas (e.g. resolve a field using a Rust lambda) If you're looking for a ready to use solution that has all this functionality packaged as a Gateway have a look at: https://github.com/jensneuse/graphql-gateway Created by Jens Neuse
Package s2i is a tool for building reproducible Docker images. The s2i command produces ready-to-run images by injecting source code into a Docker image and assembling a new Docker image which incorporates the base image and built source, and is ready to use with docker run.
Package kyber provides a toolbox of advanced cryptographic primitives, for applications that need more than straightforward signing and encryption. This top level package defines the interfaces to cryptographic primitives designed to be independent of specific cryptographic algorithms, to facilitate upgrading applications to new cryptographic algorithms or switching to alternative algorithms for experimentation purposes. This toolkits public-key crypto API includes a kyber.Group interface supporting a broad class of group-based public-key primitives including DSA-style integer residue groups and elliptic curve groups. Users of this API can write higher-level crypto algorithms such as zero-knowledge proofs without knowing or caring exactly what kind of group, let alone which precise security parameters or elliptic curves, are being used. The kyber.Group interface supports the standard algebraic operations on group elements and scalars that nontrivial public-key algorithms tend to rely on. The interface uses additive group terminology typical for elliptic curves, such that point addition is homomorphically equivalent to adding their (potentially secret) scalar multipliers. But the API and its operations apply equally well to DSA-style integer groups. As a trivial example, generating a public/private keypair is as simple as: The first statement picks a private key (Scalar) from a the suites's source of cryptographic random or pseudo-random bits, while the second performs elliptic curve scalar multiplication of the curve's standard base point (indicated by the 'nil' argument to Mul) by the scalar private key 'a'. Similarly, computing a Diffie-Hellman shared secret using Alice's private key 'a' and Bob's public key 'B' can be done via: Note that we use 'Mul' rather than 'Exp' here because the library uses the additive-group terminology common for elliptic curve crypto, rather than the multiplicative-group terminology of traditional integer groups - but the two are semantically equivalent and the interface itself works for both elliptic curve and integer groups. Various sub-packages provide several specific implementations of these cryptographic interfaces. In particular, the 'group/mod' sub-package provides implementations of modular integer groups underlying conventional DSA-style algorithms. The `group/nist` package provides NIST-standardized elliptic curves built on the Go crypto library. The 'group/edwards25519' sub-package provides the kyber.Group interface using the popular Ed25519 curve. Other sub-packages build more interesting high-level cryptographic tools atop these primitive interfaces, including: - share: Polynomial commitment and verifiable Shamir secret splitting for implementing verifiable 't-of-n' threshold cryptographic schemes. This can be used to encrypt a message so that any 2 out of 3 receivers must work together to decrypt it, for example. - proof: An implementation of the general Camenisch/Stadler framework for discrete logarithm knowledge proofs. This system supports both interactive and non-interactive proofs of a wide variety of statements such as, "I know the secret x associated with public key X or I know the secret y associated with public key Y", without revealing anything about either secret or even which branch of the "or" clause is true. - sign: The sign directory contains different signature schemes. - sign/anon provides anonymous and pseudonymous public-key encryption and signing, where the sender of a signed message or the receiver of an encrypted message is defined as an explicit anonymity set containing several public keys rather than just one. For example, a member of an organization's board of trustees might prove to be a member of the board without revealing which member she is. - sign/cosi provides collective signature algorithm, where a bunch of signers create a unique, compact and efficiently verifiable signature using the Schnorr signature as a basis. - sign/eddsa provides a kyber-native implementation of the EdDSA signature scheme. - sign/schnorr provides a basic vanilla Schnorr signature scheme implementation. - shuffle: Verifiable cryptographic shuffles of ElGamal ciphertexts, which can be used to implement (for example) voting or auction schemes that keep the sources of individual votes or bids private without anyone having to trust more than one of the shuffler(s) to shuffle votes/bids honestly. As should be obvious, this library is intended to be used by developers who are at least moderately knowledgeable about cryptography. If you want a crypto library that makes it easy to implement "basic crypto" functionality correctly - i.e., plain public-key encryption and signing - then [NaCl secretbox](https://godoc.org/golang.org/x/crypto/nacl/secretbox) may be a better choice. This toolkit's purpose is to make it possible - and preferably easy - to do slightly more interesting things that most current crypto libraries don't support effectively. The one existing crypto library that this toolkit is probably most comparable to is the Charm rapid prototyping library for Python (https://charm-crypto.com/category/charm). This library incorporates and/or builds on existing code from a variety of sources, as documented in the relevant sub-packages. This library is offered as-is, and without a guarantee. It will need an independent security review before it should be considered ready for use in security-critical applications. If you integrate Kyber into your application it is YOUR RESPONSIBILITY to arrange for that audit. If you notice a possible security problem, please report it to dedis-security@epfl.ch.
Package ql implements a pure Go embedded SQL database engine. QL is a member of the SQL family of languages. It is less complex and less powerful than SQL (whichever specification SQL is considered to be). 2018-08-02: Release v1.2.0 adds initial support for Go modules. 2017-01-10: Release v1.1.0 fixes some bugs and adds a configurable WAL headroom. 2016-07-29: Release v1.0.6 enables alternatively using = instead of == for equality operation. 2016-07-11: Release v1.0.5 undoes vendoring of lldb. QL now uses stable lldb (github.com/cznic/lldb). 2016-07-06: Release v1.0.4 fixes a panic when closing the WAL file. 2016-04-03: Release v1.0.3 fixes a data race. 2016-03-23: Release v1.0.2 vendors github.com/cznic/exp/lldb and github.com/camlistore/go4/lock. 2016-03-17: Release v1.0.1 adjusts for latest goyacc. Parser error messages are improved and changed, but their exact form is not considered a API change. 2016-03-05: The current version has been tagged v1.0.0. 2015-06-15: To improve compatibility with other SQL implementations, the count built-in aggregate function now accepts * as its argument. 2015-05-29: The execution planner was rewritten from scratch. It should use indices in all places where they were used before plus in some additional situations. It is possible to investigate the plan using the newly added EXPLAIN statement. The QL tool is handy for such analysis. If the planner would have used an index, but no such exists, the plan includes hints in form of copy/paste ready CREATE INDEX statements. The planner is still quite simple and a lot of work on it is yet ahead. You can help this process by filling an issue with a schema and query which fails to use an index or indices when it should, in your opinion. Bonus points for including output of `ql 'explain <query>'`. 2015-05-09: The grammar of the CREATE INDEX statement now accepts an expression list instead of a single expression, which was further limited to just a column name or the built-in id(). As a side effect, composite indices are now functional. However, the values in the expression-list style index are not yet used by other statements or the statement/query planner. The composite index is useful while having UNIQUE clause to check for semantically duplicate rows before they get added to the table or when such a row is mutated using the UPDATE statement and the expression-list style index tuple of the row is thus recomputed. 2015-05-02: The Schema field of table __Table now correctly reflects any column constraints and/or defaults. Also, the (*DB).Info method now has that information provided in new ColumInfo fields NotNull, Constraint and Default. 2015-04-20: Added support for {LEFT,RIGHT,FULL} [OUTER] JOIN. 2015-04-18: Column definitions can now have constraints and defaults. Details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. 2015-03-06: New built-in functions formatFloat and formatInt. Thanks urandom! (https://github.com/urandom) 2015-02-16: IN predicate now accepts a SELECT statement. See the updated "Predicates" section. 2015-01-17: Logical operators || and && have now alternative spellings: OR and AND (case insensitive). AND was a keyword before, but OR is a new one. This can possibly break existing queries. For the record, it's a good idea to not use any name appearing in, for example, [7] in your queries as the list of QL's keywords may expand for gaining better compatibility with existing SQL "standards". 2015-01-12: ACID guarantees were tightened at the cost of performance in some cases. The write collecting window mechanism, a formerly used implementation detail, was removed. Inserting rows one by one in a transaction is now slow. I mean very slow. Try to avoid inserting single rows in a transaction. Instead, whenever possible, perform batch updates of tens to, say thousands of rows in a single transaction. See also: http://www.sqlite.org/faq.html#q19, the discussed synchronization principles involved are the same as for QL, modulo minor details. Note: A side effect is that closing a DB before exiting an application, both for the Go API and through database/sql driver, is no more required, strictly speaking. Beware that exiting an application while there is an open (uncommitted) transaction in progress means losing the transaction data. However, the DB will not become corrupted because of not closing it. Nor that was the case before, but formerly failing to close a DB could have resulted in losing the data of the last transaction. 2014-09-21: id() now optionally accepts a single argument - a table name. 2014-09-01: Added the DB.Flush() method and the LIKE pattern matching predicate. 2014-08-08: The built in functions max and min now accept also time values. Thanks opennota! (https://github.com/opennota) 2014-06-05: RecordSet interface extended by new methods FirstRow and Rows. 2014-06-02: Indices on id() are now used by SELECT statements. 2014-05-07: Introduction of Marshal, Schema, Unmarshal. 2014-04-15: Added optional IF NOT EXISTS clause to CREATE INDEX and optional IF EXISTS clause to DROP INDEX. 2014-04-12: The column Unique in the virtual table __Index was renamed to IsUnique because the old name is a keyword. Unfortunately, this is a breaking change, sorry. 2014-04-11: Introduction of LIMIT, OFFSET. 2014-04-10: Introduction of query rewriting. 2014-04-07: Introduction of indices. QL imports zappy[8], a block-based compressor, which speeds up its performance by using a C version of the compression/decompression algorithms. If a CGO-free (pure Go) version of QL, or an app using QL, is required, please include 'purego' in the -tags option of go {build,get,install}. For example: If zappy was installed before installing QL, it might be necessary to rebuild zappy first (or rebuild QL with all its dependencies using the -a option): The syntax is specified using Extended Backus-Naur Form (EBNF) Lower-case production names are used to identify lexical tokens. Non-terminals are in CamelCase. Lexical tokens are enclosed in double quotes "" or back quotes “. The form a … b represents the set of characters from a through b as alternatives. The horizontal ellipsis … is also used elsewhere in the spec to informally denote various enumerations or code snippets that are not further specified. QL source code is Unicode text encoded in UTF-8. The text is not canonicalized, so a single accented code point is distinct from the same character constructed from combining an accent and a letter; those are treated as two code points. For simplicity, this document will use the unqualified term character to refer to a Unicode code point in the source text. Each code point is distinct; for instance, upper and lower case letters are different characters. Implementation restriction: For compatibility with other tools, the parser may disallow the NUL character (U+0000) in the statement. Implementation restriction: A byte order mark is disallowed anywhere in QL statements. The following terms are used to denote specific character classes The underscore character _ (U+005F) is considered a letter. Lexical elements are comments, tokens, identifiers, keywords, operators and delimiters, integer, floating-point, imaginary, rune and string literals and QL parameters. Line comments start with the character sequence // or -- and stop at the end of the line. A line comment acts like a space. General comments start with the character sequence /* and continue through the character sequence */. A general comment acts like a space. Comments do not nest. Tokens form the vocabulary of QL. There are four classes: identifiers, keywords, operators and delimiters, and literals. White space, formed from spaces (U+0020), horizontal tabs (U+0009), carriage returns (U+000D), and newlines (U+000A), is ignored except as it separates tokens that would otherwise combine into a single token. The formal grammar uses semicolons ";" as separators of QL statements. A single QL statement or the last QL statement in a list of statements can have an optional semicolon terminator. (Actually a separator from the following empty statement.) Identifiers name entities such as tables or record set columns. An identifier is a sequence of one or more letters and digits. The first character in an identifier must be a letter. For example No identifiers are predeclared, however note that no keyword can be used as an identifier. Identifiers starting with two underscores are used for meta data virtual tables names. For forward compatibility, users should generally avoid using any identifiers starting with two underscores. For example The following keywords are reserved and may not be used as identifiers. Keywords are not case sensitive. The following character sequences represent operators, delimiters, and other special tokens Operators consisting of more than one character are referred to by names in the rest of the documentation An integer literal is a sequence of digits representing an integer constant. An optional prefix sets a non-decimal base: 0 for octal, 0x or 0X for hexadecimal. In hexadecimal literals, letters a-f and A-F represent values 10 through 15. For example A floating-point literal is a decimal representation of a floating-point constant. It has an integer part, a decimal point, a fractional part, and an exponent part. The integer and fractional part comprise decimal digits; the exponent part is an e or E followed by an optionally signed decimal exponent. One of the integer part or the fractional part may be elided; one of the decimal point or the exponent may be elided. For example An imaginary literal is a decimal representation of the imaginary part of a complex constant. It consists of a floating-point literal or decimal integer followed by the lower-case letter i. For example A rune literal represents a rune constant, an integer value identifying a Unicode code point. A rune literal is expressed as one or more characters enclosed in single quotes. Within the quotes, any character may appear except single quote and newline. A single quoted character represents the Unicode value of the character itself, while multi-character sequences beginning with a backslash encode values in various formats. The simplest form represents the single character within the quotes; since QL statements are Unicode characters encoded in UTF-8, multiple UTF-8-encoded bytes may represent a single integer value. For instance, the literal 'a' holds a single byte representing a literal a, Unicode U+0061, value 0x61, while 'ä' holds two bytes (0xc3 0xa4) representing a literal a-dieresis, U+00E4, value 0xe4. Several backslash escapes allow arbitrary values to be encoded as ASCII text. There are four ways to represent the integer value as a numeric constant: \x followed by exactly two hexadecimal digits; \u followed by exactly four hexadecimal digits; \U followed by exactly eight hexadecimal digits, and a plain backslash \ followed by exactly three octal digits. In each case the value of the literal is the value represented by the digits in the corresponding base. Although these representations all result in an integer, they have different valid ranges. Octal escapes must represent a value between 0 and 255 inclusive. Hexadecimal escapes satisfy this condition by construction. The escapes \u and \U represent Unicode code points so within them some values are illegal, in particular those above 0x10FFFF and surrogate halves. After a backslash, certain single-character escapes represent special values All other sequences starting with a backslash are illegal inside rune literals. For example A string literal represents a string constant obtained from concatenating a sequence of characters. There are two forms: raw string literals and interpreted string literals. Raw string literals are character sequences between back quotes “. Within the quotes, any character is legal except back quote. The value of a raw string literal is the string composed of the uninterpreted (implicitly UTF-8-encoded) characters between the quotes; in particular, backslashes have no special meaning and the string may contain newlines. Carriage returns inside raw string literals are discarded from the raw string value. Interpreted string literals are character sequences between double quotes "". The text between the quotes, which may not contain newlines, forms the value of the literal, with backslash escapes interpreted as they are in rune literals (except that \' is illegal and \" is legal), with the same restrictions. The three-digit octal (\nnn) and two-digit hexadecimal (\xnn) escapes represent individual bytes of the resulting string; all other escapes represent the (possibly multi-byte) UTF-8 encoding of individual characters. Thus inside a string literal \377 and \xFF represent a single byte of value 0xFF=255, while ÿ, \u00FF, \U000000FF and \xc3\xbf represent the two bytes 0xc3 0xbf of the UTF-8 encoding of character U+00FF. For example These examples all represent the same string If the statement source represents a character as two code points, such as a combining form involving an accent and a letter, the result will be an error if placed in a rune literal (it is not a single code point), and will appear as two code points if placed in a string literal. Literals are assigned their values from the respective text representation at "compile" (parse) time. QL parameters provide the same functionality as literals, but their value is assigned at execution time from an expression list passed to DB.Run or DB.Execute. Using '?' or '$' is completely equivalent. For example Keywords 'false' and 'true' (not case sensitive) represent the two possible constant values of type bool (also not case sensitive). Keyword 'NULL' (not case sensitive) represents an untyped constant which is assignable to any type. NULL is distinct from any other value of any type. A type determines the set of values and operations specific to values of that type. A type is specified by a type name. Named instances of the boolean, numeric, and string types are keywords. The names are not case sensitive. Note: The blob type is exchanged between the back end and the API as []byte. On 32 bit platforms this limits the size which the implementation can handle to 2G. A boolean type represents the set of Boolean truth values denoted by the predeclared constants true and false. The predeclared boolean type is bool. A duration type represents the elapsed time between two instants as an int64 nanosecond count. The representation limits the largest representable duration to approximately 290 years. A numeric type represents sets of integer or floating-point values. The predeclared architecture-independent numeric types are The value of an n-bit integer is n bits wide and represented using two's complement arithmetic. Conversions are required when different numeric types are mixed in an expression or assignment. A string type represents the set of string values. A string value is a (possibly empty) sequence of bytes. The case insensitive keyword for the string type is 'string'. The length of a string (its size in bytes) can be discovered using the built-in function len. A time type represents an instant in time with nanosecond precision. Each time has associated with it a location, consulted when computing the presentation form of the time. The following functions are implicitly declared An expression specifies the computation of a value by applying operators and functions to operands. Operands denote the elementary values in an expression. An operand may be a literal, a (possibly qualified) identifier denoting a constant or a function or a table/record set column, or a parenthesized expression. A qualified identifier is an identifier qualified with a table/record set name prefix. For example Primary expression are the operands for unary and binary expressions. For example A primary expression of the form denotes the element of a string indexed by x. Its type is byte. The value x is called the index. The following rules apply - The index x must be of integer type except bigint or duration; it is in range if 0 <= x < len(s), otherwise it is out of range. - A constant index must be non-negative and representable by a value of type int. - A constant index must be in range if the string a is a literal. - If x is out of range at run time, a run-time error occurs. - s[x] is the byte at index x and the type of s[x] is byte. If s is NULL or x is NULL then the result is NULL. Otherwise s[x] is illegal. For a string, the primary expression constructs a substring. The indices low and high select which elements appear in the result. The result has indices starting at 0 and length equal to high - low. For convenience, any of the indices may be omitted. A missing low index defaults to zero; a missing high index defaults to the length of the sliced operand The indices low and high are in range if 0 <= low <= high <= len(a), otherwise they are out of range. A constant index must be non-negative and representable by a value of type int. If both indices are constant, they must satisfy low <= high. If the indices are out of range at run time, a run-time error occurs. Integer values of type bigint or duration cannot be used as indices. If s is NULL the result is NULL. If low or high is not omitted and is NULL then the result is NULL. Given an identifier f denoting a predeclared function, calls f with arguments a1, a2, … an. Arguments are evaluated before the function is called. The type of the expression is the result type of f. In a function call, the function value and arguments are evaluated in the usual order. After they are evaluated, the parameters of the call are passed by value to the function and the called function begins execution. The return value of the function is passed by value when the function returns. Calling an undefined function causes a compile-time error. Operators combine operands into expressions. Comparisons are discussed elsewhere. For other binary operators, the operand types must be identical unless the operation involves shifts or untyped constants. For operations involving constants only, see the section on constant expressions. Except for shift operations, if one operand is an untyped constant and the other operand is not, the constant is converted to the type of the other operand. The right operand in a shift expression must have unsigned integer type or be an untyped constant that can be converted to unsigned integer type. If the left operand of a non-constant shift expression is an untyped constant, the type of the constant is what it would be if the shift expression were replaced by its left operand alone. Expressions of the form yield a boolean value true if expr2, a regular expression, matches expr1 (see also [6]). Both expression must be of type string. If any one of the expressions is NULL the result is NULL. Predicates are special form expressions having a boolean result type. Expressions of the form are equivalent, including NULL handling, to The types of involved expressions must be comparable as defined in "Comparison operators". Another form of the IN predicate creates the expression list from a result of a SelectStmt. The SelectStmt must select only one column. The produced expression list is resource limited by the memory available to the process. NULL values produced by the SelectStmt are ignored, but if all records of the SelectStmt are NULL the predicate yields NULL. The select statement is evaluated only once. If the type of expr is not the same as the type of the field returned by the SelectStmt then the set operation yields false. The type of the column returned by the SelectStmt must be one of the simple (non blob-like) types: Expressions of the form are equivalent, including NULL handling, to The types of involved expressions must be ordered as defined in "Comparison operators". Expressions of the form yield a boolean value true if expr does not have a specific type (case A) or if expr has a specific type (case B). In other cases the result is a boolean value false. Unary operators have the highest precedence. There are five precedence levels for binary operators. Multiplication operators bind strongest, followed by addition operators, comparison operators, && (logical AND), and finally || (logical OR) Binary operators of the same precedence associate from left to right. For instance, x / y * z is the same as (x / y) * z. Note that the operator precedence is reflected explicitly by the grammar. Arithmetic operators apply to numeric values and yield a result of the same type as the first operand. The four standard arithmetic operators (+, -, *, /) apply to integer, rational, floating-point, and complex types; + also applies to strings; +,- also applies to times. All other arithmetic operators apply to integers only. sum integers, rationals, floats, complex values, strings difference integers, rationals, floats, complex values, times product integers, rationals, floats, complex values / quotient integers, rationals, floats, complex values % remainder integers & bitwise AND integers | bitwise OR integers ^ bitwise XOR integers &^ bit clear (AND NOT) integers << left shift integer << unsigned integer >> right shift integer >> unsigned integer Strings can be concatenated using the + operator String addition creates a new string by concatenating the operands. A value of type duration can be added to or subtracted from a value of type time. Times can subtracted from each other producing a value of type duration. For two integer values x and y, the integer quotient q = x / y and remainder r = x % y satisfy the following relationships with x / y truncated towards zero ("truncated division"). As an exception to this rule, if the dividend x is the most negative value for the int type of x, the quotient q = x / -1 is equal to x (and r = 0). If the divisor is a constant expression, it must not be zero. If the divisor is zero at run time, a run-time error occurs. If the dividend is non-negative and the divisor is a constant power of 2, the division may be replaced by a right shift, and computing the remainder may be replaced by a bitwise AND operation The shift operators shift the left operand by the shift count specified by the right operand. They implement arithmetic shifts if the left operand is a signed integer and logical shifts if it is an unsigned integer. There is no upper limit on the shift count. Shifts behave as if the left operand is shifted n times by 1 for a shift count of n. As a result, x << 1 is the same as x*2 and x >> 1 is the same as x/2 but truncated towards negative infinity. For integer operands, the unary operators +, -, and ^ are defined as follows For floating-point and complex numbers, +x is the same as x, while -x is the negation of x. The result of a floating-point or complex division by zero is not specified beyond the IEEE-754 standard; whether a run-time error occurs is implementation-specific. Whenever any operand of any arithmetic operation, unary or binary, is NULL, as well as in the case of the string concatenating operation, the result is NULL. For unsigned integer values, the operations +, -, *, and << are computed modulo 2n, where n is the bit width of the unsigned integer's type. Loosely speaking, these unsigned integer operations discard high bits upon overflow, and expressions may rely on “wrap around”. For signed integers with a finite bit width, the operations +, -, *, and << may legally overflow and the resulting value exists and is deterministically defined by the signed integer representation, the operation, and its operands. No exception is raised as a result of overflow. An evaluator may not optimize an expression under the assumption that overflow does not occur. For instance, it may not assume that x < x + 1 is always true. Integers of type bigint and rationals do not overflow but their handling is limited by the memory resources available to the program. Comparison operators compare two operands and yield a boolean value. In any comparison, the first operand must be of same type as is the second operand, or vice versa. The equality operators == and != apply to operands that are comparable. The ordering operators <, <=, >, and >= apply to operands that are ordered. These terms and the result of the comparisons are defined as follows - Boolean values are comparable. Two boolean values are equal if they are either both true or both false. - Complex values are comparable. Two complex values u and v are equal if both real(u) == real(v) and imag(u) == imag(v). - Integer values are comparable and ordered, in the usual way. Note that durations are integers. - Floating point values are comparable and ordered, as defined by the IEEE-754 standard. - Rational values are comparable and ordered, in the usual way. - String and Blob values are comparable and ordered, lexically byte-wise. - Time values are comparable and ordered. Whenever any operand of any comparison operation is NULL, the result is NULL. Note that slices are always of type string. Logical operators apply to boolean values and yield a boolean result. The right operand is evaluated conditionally. The truth tables for logical operations with NULL values Conversions are expressions of the form T(x) where T is a type and x is an expression that can be converted to type T. A constant value x can be converted to type T in any of these cases: - x is representable by a value of type T. - x is a floating-point constant, T is a floating-point type, and x is representable by a value of type T after rounding using IEEE 754 round-to-even rules. The constant T(x) is the rounded value. - x is an integer constant and T is a string type. The same rule as for non-constant x applies in this case. Converting a constant yields a typed constant as result. A non-constant value x can be converted to type T in any of these cases: - x has type T. - x's type and T are both integer or floating point types. - x's type and T are both complex types. - x is an integer, except bigint or duration, and T is a string type. Specific rules apply to (non-constant) conversions between numeric types or to and from a string type. These conversions may change the representation of x and incur a run-time cost. All other conversions only change the type but not the representation of x. A conversion of NULL to any type yields NULL. For the conversion of non-constant numeric values, the following rules apply 1. When converting between integer types, if the value is a signed integer, it is sign extended to implicit infinite precision; otherwise it is zero extended. It is then truncated to fit in the result type's size. For example, if v == uint16(0x10F0), then uint32(int8(v)) == 0xFFFFFFF0. The conversion always yields a valid value; there is no indication of overflow. 2. When converting a floating-point number to an integer, the fraction is discarded (truncation towards zero). 3. When converting an integer or floating-point number to a floating-point type, or a complex number to another complex type, the result value is rounded to the precision specified by the destination type. For instance, the value of a variable x of type float32 may be stored using additional precision beyond that of an IEEE-754 32-bit number, but float32(x) represents the result of rounding x's value to 32-bit precision. Similarly, x + 0.1 may use more than 32 bits of precision, but float32(x + 0.1) does not. In all non-constant conversions involving floating-point or complex values, if the result type cannot represent the value the conversion succeeds but the result value is implementation-dependent. 1. Converting a signed or unsigned integer value to a string type yields a string containing the UTF-8 representation of the integer. Values outside the range of valid Unicode code points are converted to "\uFFFD". 2. Converting a blob to a string type yields a string whose successive bytes are the elements of the blob. 3. Converting a value of a string type to a blob yields a blob whose successive elements are the bytes of the string. 4. Converting a value of a bigint type to a string yields a string containing the decimal decimal representation of the integer. 5. Converting a value of a string type to a bigint yields a bigint value containing the integer represented by the string value. A prefix of “0x” or “0X” selects base 16; the “0” prefix selects base 8, and a “0b” or “0B” prefix selects base 2. Otherwise the value is interpreted in base 10. An error occurs if the string value is not in any valid format. 6. Converting a value of a rational type to a string yields a string containing the decimal decimal representation of the rational in the form "a/b" (even if b == 1). 7. Converting a value of a string type to a bigrat yields a bigrat value containing the rational represented by the string value. The string can be given as a fraction "a/b" or as a floating-point number optionally followed by an exponent. An error occurs if the string value is not in any valid format. 8. Converting a value of a duration type to a string returns a string representing the duration in the form "72h3m0.5s". Leading zero units are omitted. As a special case, durations less than one second format using a smaller unit (milli-, micro-, or nanoseconds) to ensure that the leading digit is non-zero. The zero duration formats as 0, with no unit. 9. Converting a string value to a duration yields a duration represented by the string. A duration string is a possibly signed sequence of decimal numbers, each with optional fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m". Valid time units are "ns", "us" (or "µs"), "ms", "s", "m", "h". 10. Converting a time value to a string returns the time formatted using the format string When evaluating the operands of an expression or of function calls, operations are evaluated in lexical left-to-right order. For example, in the evaluation of the function calls and evaluation of c happen in the order h(), i(), j(), c. Floating-point operations within a single expression are evaluated according to the associativity of the operators. Explicit parentheses affect the evaluation by overriding the default associativity. In the expression x + (y + z) the addition y + z is performed before adding x. Statements control execution. The empty statement does nothing. Alter table statements modify existing tables. With the ADD clause it adds a new column to the table. The column must not exist. With the DROP clause it removes an existing column from a table. The column must exist and it must be not the only (last) column of the table. IOW, there cannot be a table with no columns. For example When adding a column to a table with existing data, the constraint clause of the ColumnDef cannot be used. Adding a constrained column to an empty table is fine. Begin transactions statements introduce a new transaction level. Every transaction level must be eventually balanced by exactly one of COMMIT or ROLLBACK statements. Note that when a transaction is roll-backed because of a statement failure then no explicit balancing of the respective BEGIN TRANSACTION is statement is required nor permitted. Failure to properly balance any opened transaction level may cause dead locks and/or lose of data updated in the uppermost opened but never properly closed transaction level. For example A database cannot be updated (mutated) outside of a transaction. Statements requiring a transaction A database is effectively read only outside of a transaction. Statements not requiring a transaction The commit statement closes the innermost transaction nesting level. If that's the outermost level then the updates to the DB made by the transaction are atomically made persistent. For example Create index statements create new indices. Index is a named projection of ordered values of a table column to the respective records. As a special case the id() of the record can be indexed. Index name must not be the same as any of the existing tables and it also cannot be the same as of any column name of the table the index is on. For example Now certain SELECT statements may use the indices to speed up joins and/or to speed up record set filtering when the WHERE clause is used; or the indices might be used to improve the performance when the ORDER BY clause is present. The UNIQUE modifier requires the indexed values tuple to be index-wise unique or have all values NULL. The optional IF NOT EXISTS clause makes the statement a no operation if the index already exists. A simple index consists of only one expression which must be either a column name or the built-in id(). A more complex and more general index is one that consists of more than one expression or its single expression does not qualify as a simple index. In this case the type of all expressions in the list must be one of the non blob-like types. Note: Blob-like types are blob, bigint, bigrat, time and duration. Create table statements create new tables. A column definition declares the column name and type. Table names and column names are case sensitive. Neither a table or an index of the same name may exist in the DB. For example The optional IF NOT EXISTS clause makes the statement a no operation if the table already exists. The optional constraint clause has two forms. The first one is found in many SQL dialects. This form prevents the data in column DepartmentName to be NULL. The second form allows an arbitrary boolean expression to be used to validate the column. If the value of the expression is true then the validation succeeded. If the value of the expression is false or NULL then the validation fails. If the value of the expression is not of type bool an error occurs. The optional DEFAULT clause is an expression which, if present, is substituted instead of a NULL value when the colum is assigned a value. Note that the constraint and/or default expressions may refer to other columns by name: When a table row is inserted by the INSERT INTO statement or when a table row is updated by the UPDATE statement, the order of operations is as follows: 1. The new values of the affected columns are set and the values of all the row columns become the named values which can be referred to in default expressions evaluated in step 2. 2. If any row column value is NULL and the DEFAULT clause is present in the column's definition, the default expression is evaluated and its value is set as the respective column value. 3. The values, potentially updated, of row columns become the named values which can be referred to in constraint expressions evaluated during step 4. 4. All row columns which definition has the constraint clause present will have that constraint checked. If any constraint violation is detected, the overall operation fails and no changes to the table are made. Delete from statements remove rows from a table, which must exist. For example If the WHERE clause is not present then all rows are removed and the statement is equivalent to the TRUNCATE TABLE statement. Drop index statements remove indices from the DB. The index must exist. For example The optional IF EXISTS clause makes the statement a no operation if the index does not exist. Drop table statements remove tables from the DB. The table must exist. For example The optional IF EXISTS clause makes the statement a no operation if the table does not exist. Insert into statements insert new rows into tables. New rows come from literal data, if using the VALUES clause, or are a result of select statement. In the later case the select statement is fully evaluated before the insertion of any rows is performed, allowing to insert values calculated from the same table rows are to be inserted into. If the ColumnNameList part is omitted then the number of values inserted in the row must be the same as are columns in the table. If the ColumnNameList part is present then the number of values per row must be same as the same number of column names. All other columns of the record are set to NULL. The type of the value assigned to a column must be the same as is the column's type or the value must be NULL. For example If any of the columns of the table were defined using the optional constraints clause or the optional defaults clause then those are processed on a per row basis. The details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. Explain statement produces a recordset consisting of lines of text which describe the execution plan of a statement, if any. For example, the QL tool treats the explain statement specially and outputs the joined lines: The explanation may aid in uderstanding how a statement/query would be executed and if indices are used as expected - or which indices may possibly improve the statement performance. The create index statements above were directly copy/pasted in the terminal from the suggestions provided by the filter recordset pipeline part returned by the explain statement. If the statement has nothing special in its plan, the result is the original statement. To get an explanation of the select statement of the IN predicate, use the EXPLAIN statement with that particular select statement. The rollback statement closes the innermost transaction nesting level discarding any updates to the DB made by it. If that's the outermost level then the effects on the DB are as if the transaction never happened. For example The (temporary) record set from the last statement is returned and can be processed by the client. In this case the rollback is the same as 'DROP TABLE tmp;' but it can be a more complex operation. Select from statements produce recordsets. The optional DISTINCT modifier ensures all rows in the result recordset are unique. Either all of the resulting fields are returned ('*') or only those named in FieldList. RecordSetList is a list of table names or parenthesized select statements, optionally (re)named using the AS clause. The result can be filtered using a WhereClause and orderd by the OrderBy clause. For example If Recordset is a nested, parenthesized SelectStmt then it must be given a name using the AS clause if its field are to be accessible in expressions. A field is an named expression. Identifiers, not used as a type in conversion or a function name in the Call clause, denote names of (other) fields, values of which should be used in the expression. The expression can be named using the AS clause. If the AS clause is not present and the expression consists solely of a field name, then that field name is used as the name of the resulting field. Otherwise the field is unnamed. For example The SELECT statement can optionally enumerate the desired/resulting fields in a list. No two identical field names can appear in the list. When more than one record set is used in the FROM clause record set list, the result record set field names are rewritten to be qualified using the record set names. If a particular record set doesn't have a name, its respective fields became unnamed. The optional JOIN clause, for example is mostly equal to except that the rows from a which, when they appear in the cross join, never made expr to evaluate to true, are combined with a virtual row from b, containing all nulls, and added to the result set. For the RIGHT JOIN variant the discussed rules are used for rows from b not satisfying expr == true and the virtual, all-null row "comes" from a. The FULL JOIN adds the respective rows which would be otherwise provided by the separate executions of the LEFT JOIN and RIGHT JOIN variants. For more thorough OUTER JOIN discussion please see the Wikipedia article at [10]. Resultins rows of a SELECT statement can be optionally ordered by the ORDER BY clause. Collating proceeds by considering the expressions in the expression list left to right until a collating order is determined. Any possibly remaining expressions are not evaluated. All of the expression values must yield an ordered type or NULL. Ordered types are defined in "Comparison operators". Collating of elements having a NULL value is different compared to what the comparison operators yield in expression evaluation (NULL result instead of a boolean value). Below, T denotes a non NULL value of any QL type. NULL collates before any non NULL value (is considered smaller than T). Two NULLs have no collating order (are considered equal). The WHERE clause restricts records considered by some statements, like SELECT FROM, DELETE FROM, or UPDATE. It is an error if the expression evaluates to a non null value of non bool type. Another form of the WHERE clause is an existence predicate of a parenthesized select statement. The EXISTS form evaluates to true if the parenthesized SELECT statement produces a non empty record set. The NOT EXISTS form evaluates to true if the parenthesized SELECT statement produces an empty record set. The parenthesized SELECT statement is evaluated only once (TODO issue #159). The GROUP BY clause is used to project rows having common values into a smaller set of rows. For example Using the GROUP BY without any aggregate functions in the selected fields is in certain cases equal to using the DISTINCT modifier. The last two examples above produce the same resultsets. The optional OFFSET clause allows to ignore first N records. For example The above will produce only rows 11, 12, ... of the record set, if they exist. The value of the expression must a non negative integer, but not bigint or duration. The optional LIMIT clause allows to ignore all but first N records. For example The above will return at most the first 10 records of the record set. The value of the expression must a non negative integer, but not bigint or duration. The LIMIT and OFFSET clauses can be combined. For example Considering table t has, say 10 records, the above will produce only records 4 - 8. After returning record #8, no more result rows/records are computed. 1. The FROM clause is evaluated, producing a Cartesian product of its source record sets (tables or nested SELECT statements). 2. If present, the JOIN cluase is evaluated on the result set of the previous evaluation and the recordset specified by the JOIN clause. (... JOIN Recordset ON ...) 3. If present, the WHERE clause is evaluated on the result set of the previous evaluation. 4. If present, the GROUP BY clause is evaluated on the result set of the previous evaluation(s). 5. The SELECT field expressions are evaluated on the result set of the previous evaluation(s). 6. If present, the DISTINCT modifier is evaluated on the result set of the previous evaluation(s). 7. If present, the ORDER BY clause is evaluated on the result set of the previous evaluation(s). 8. If present, the OFFSET clause is evaluated on the result set of the previous evaluation(s). The offset expression is evaluated once for the first record produced by the previous evaluations. 9. If present, the LIMIT clause is evaluated on the result set of the previous evaluation(s). The limit expression is evaluated once for the first record produced by the previous evaluations. Truncate table statements remove all records from a table. The table must exist. For example Update statements change values of fields in rows of a table. For example Note: The SET clause is optional. If any of the columns of the table were defined using the optional constraints clause or the optional defaults clause then those are processed on a per row basis. The details are discussed in the "Constraints and defaults" chapter below the CREATE TABLE statement documentation. To allow to query for DB meta data, there exist specially named tables, some of them being virtual. Note: Virtual system tables may have fake table-wise unique but meaningless and unstable record IDs. Do not apply the built-in id() to any system table. The table __Table lists all tables in the DB. The schema is The Schema column returns the statement to (re)create table Name. This table is virtual. The table __Colum lists all columns of all tables in the DB. The schema is The Ordinal column defines the 1-based index of the column in the record. This table is virtual. The table __Colum2 lists all columns of all tables in the DB which have the constraint NOT NULL or which have a constraint expression defined or which have a default expression defined. The schema is It's possible to obtain a consolidated recordset for all properties of all DB columns using The Name column is the column name in TableName. The table __Index lists all indices in the DB. The schema is The IsUnique columns reflects if the index was created using the optional UNIQUE clause. This table is virtual. Built-in functions are predeclared. The built-in aggregate function avg returns the average of values of an expression. Avg ignores NULL values, but returns NULL if all values of a column are NULL or if avg is applied to an empty record set. The column values must be of a numeric type. The built-in function contains returns true if substr is within s. If any argument to contains is NULL the result is NULL. The built-in aggregate function count returns how many times an expression has a non NULL values or the number of rows in a record set. Note: count() returns 0 for an empty record set. For example Date returns the time corresponding to in the appropriate zone for that time in the given location. The month, day, hour, min, sec, and nsec values may be outside their usual ranges and will be normalized during the conversion. For example, October 32 converts to November 1. A daylight savings time transition skips or repeats times. For example, in the United States, March 13, 2011 2:15am never occurred, while November 6, 2011 1:15am occurred twice. In such cases, the choice of time zone, and therefore the time, is not well-defined. Date returns a time that is correct in one of the two zones involved in the transition, but it does not guarantee which. A location maps time instants to the zone in use at that time. Typically, the location represents the collection of time offsets in use in a geographical area, such as "CEST" and "CET" for central Europe. "local" represents the system's local time zone. "UTC" represents Universal Coordinated Time (UTC). The month specifies a month of the year (January = 1, ...). If any argument to date is NULL the result is NULL. The built-in function day returns the day of the month specified by t. If the argument to day is NULL the result is NULL. The built-in function formatTime returns a textual representation of the time value formatted according to layout, which defines the format by showing how the reference time, would be displayed if it were the value; it serves as an example of the desired output. The same display rules will then be applied to the time value. If any argument to formatTime is NULL the result is NULL. NOTE: The string value of the time zone, like "CET" or "ACDT", is dependent on the time zone of the machine the function is run on. For example, if the t value is in "CET", but the machine is in "ACDT", instead of "CET" the result is "+0100". This is the same what Go (time.Time).String() returns and in fact formatTime directly calls t.String(). returns on a machine in the CET time zone, but may return on a machine in the ACDT zone. The time value is in both cases the same so its ordering and comparing is correct. Only the display value can differ. The built-in functions formatFloat and formatInt format numbers to strings using go's number format functions in the `strconv` package. For all three functions, only the first argument is mandatory. The default values of the rest are shown in the examples. If the first argument is NULL, the result is NULL. returns returns returns Unlike the `strconv` equivalent, the formatInt function handles all integer types, both signed and unsigned. The built-in function hasPrefix tests whether the string s begins with prefix. If any argument to hasPrefix is NULL the result is NULL. The built-in function hasSuffix tests whether the string s ends with suffix. If any argument to hasSuffix is NULL the result is NULL. The built-in function hour returns the hour within the day specified by t, in the range [0, 23]. If the argument to hour is NULL the result is NULL. The built-in function hours returns the duration as a floating point number of hours. If the argument to hours is NULL the result is NULL. The built-in function id takes zero or one arguments. If no argument is provided, id() returns a table-unique automatically assigned numeric identifier of type int. Ids of deleted records are not reused unless the DB becomes completely empty (has no tables). For example If id() without arguments is called for a row which is not a table record then the result value is NULL. For example If id() has one argument it must be a table name of a table in a cross join. For example The built-in function len takes a string argument and returns the lentgh of the string in bytes. The expression len(s) is constant if s is a string constant. If the argument to len is NULL the result is NULL. The built-in aggregate function max returns the largest value of an expression in a record set. Max ignores NULL values, but returns NULL if all values of a column are NULL or if max is applied to an empty record set. The expression values must be of an ordered type. For example The built-in aggregate function min returns the smallest value of an expression in a record set. Min ignores NULL values, but returns NULL if all values of a column are NULL or if min is applied to an empty record set. For example The column values must be of an ordered type. The built-in function minute returns the minute offset within the hour specified by t, in the range [0, 59]. If the argument to minute is NULL the result is NULL. The built-in function minutes returns the duration as a floating point number of minutes. If the argument to minutes is NULL the result is NULL. The built-in function month returns the month of the year specified by t (January = 1, ...). If the argument to month is NULL the result is NULL. The built-in function nanosecond returns the nanosecond offset within the second specified by t, in the range [0, 999999999]. If the argument to nanosecond is NULL the result is NULL. The built-in function nanoseconds returns the duration as an integer nanosecond count. If the argument to nanoseconds is NULL the result is NULL. The built-in function now returns the current local time. The built-in function parseTime parses a formatted string and returns the time value it represents. The layout defines the format by showing how the reference time, would be interpreted if it were the value; it serves as an example of the input format. The same interpretation will then be made to the input string. Elements omitted from the value are assumed to be zero or, when zero is impossible, one, so parsing "3:04pm" returns the time corresponding to Jan 1, year 0, 15:04:00 UTC (note that because the year is 0, this time is before the zero Time). Years must be in the range 0000..9999. The day of the week is checked for syntax but it is otherwise ignored. In the absence of a time zone indicator, parseTime returns a time in UTC. When parsing a time with a zone offset like -0700, if the offset corresponds to a time zone used by the current location, then parseTime uses that location and zone in the returned time. Otherwise it records the time as being in a fabricated location with time fixed at the given zone offset. When parsing a time with a zone abbreviation like MST, if the zone abbreviation has a defined offset in the current location, then that offset is used. The zone abbreviation "UTC" is recognized as UTC regardless of location. If the zone abbreviation is unknown, Parse records the time as being in a fabricated location with the given zone abbreviation and a zero offset. This choice means that such a time can be parses and reformatted with the same layout losslessly, but the exact instant used in the representation will differ by the actual zone offset. To avoid such problems, prefer time layouts that use a numeric zone offset. If any argument to parseTime is NULL the result is NULL. The built-in function second returns the second offset within the minute specified by t, in the range [0, 59]. If the argument to second is NULL the result is NULL. The built-in function seconds returns the duration as a floating point number of seconds. If the argument to seconds is NULL the result is NULL. The built-in function since returns the time elapsed since t. It is shorthand for now()-t. If the argument to since is NULL the result is NULL. The built-in aggregate function sum returns the sum of values of an expression for all rows of a record set. Sum ignores NULL values, but returns NULL if all values of a column are NULL or if sum is applied to an empty record set. The column values must be of a numeric type. The built-in function timeIn returns t with the location information set to loc. For discussion of the loc argument please see date(). If any argument to timeIn is NULL the result is NULL. The built-in function weekday returns the day of the week specified by t. Sunday == 0, Monday == 1, ... If the argument to weekday is NULL the result is NULL. The built-in function year returns the year in which t occurs. If the argument to year is NULL the result is NULL. The built-in function yearDay returns the day of the year specified by t, in the range [1,365] for non-leap years, and [1,366] in leap years. If the argument to yearDay is NULL the result is NULL. Three functions assemble and disassemble complex numbers. The built-in function complex constructs a complex value from a floating-point real and imaginary part, while real and imag extract the real and imaginary parts of a complex value. The type of the arguments and return value correspond. For complex, the two arguments must be of the same floating-point type and the return type is the complex type with the corresponding floating-point constituents: complex64 for float32, complex128 for float64. The real and imag functions together form the inverse, so for a complex value z, z == complex(real(z), imag(z)). If the operands of these functions are all constants, the return value is a constant. If any argument to any of complex, real, imag functions is NULL the result is NULL. For the numeric types, the following sizes are guaranteed Portions of this specification page are modifications based on work[2] created and shared by Google[3] and used according to terms described in the Creative Commons 3.0 Attribution License[4]. This specification is licensed under the Creative Commons Attribution 3.0 License, and code is licensed under a BSD license[5]. Links from the above documentation This section is not part of the specification. WARNING: The implementation of indices is new and it surely needs more time to become mature. Indices are used currently used only by the WHERE clause. The following expression patterns of 'WHERE expression' are recognized and trigger index use. The relOp is one of the relation operators <, <=, ==, >=, >. For the equality operator both operands must be of comparable types. For all other operators both operands must be of ordered types. The constant expression is a compile time constant expression. Some constant folding is still a TODO. Parameter is a QL parameter ($1 etc.). Consider tables t and u, both with an indexed field f. The WHERE expression doesn't comply with the above simple detected cases. However, such query is now automatically rewritten to which will use both of the indices. The impact of using the indices can be substantial (cf. BenchmarkCrossJoin*) if the resulting rows have low "selectivity", ie. only few rows from both tables are selected by the respective WHERE filtering. Note: Existing QL DBs can be used and indices can be added to them. However, once any indices are present in the DB, the old QL versions cannot work with such DB anymore. Running a benchmark with -v (-test.v) outputs information about the scale used to report records/s and a brief description of the benchmark. For example Running the full suite of benchmarks takes a lot of time. Use the -timeout flag to avoid them being killed after the default time limit (10 minutes).
Package sqlbuilder is a flexible and powerful tool to build SQL string and associated args.
Package tui is a library for building user interfaces for the terminal. Widgets are the main building blocks of any user interface. They allow us to present information and interact with our application. It receives keyboard and mouse events from the terminal and draws a representation of itself. Widgets are structured using layouts. Layouts are powerful tools that let you position your widgets without having to specify their exact coordinates. Here, the VBox will ensure that the Button will be placed underneath the Label. There are currently three layouts to choose from; VBox, HBox and Grid. Sizing of widgets is controlled by its SizePolicy. For now, you can read more about how size policies work in the Qt docs: http://doc.qt.io/qt-5/qsizepolicy.html#Policy-enum
Package pricing provides the API client, operations, and parameter types for AWS Price List Service. The Amazon Web Services Price List API is a centralized and convenient way to programmatically query Amazon Web Services for services, products, and pricing information. The Amazon Web Services Price List uses standardized product attributes such as Location , Storage Class , and Operating System , and provides prices at the SKU level. You can use the Amazon Web Services Price List to do the following: Build cost control and scenario planning tools Reconcile billing data Forecast future spend for budgeting purposes Provide cost benefit analysis that compare your internal workloads with Amazon Web Services Use GetServices without a service code to retrieve the service codes for all Amazon Web Services services, then GetServices with a service code to retrieve the attribute names for that service. After you have the service code and attribute names, you can use GetAttributeValues to see what values are available for an attribute. With the service code and an attribute name and value, you can use GetProducts to find specific products that you're interested in, such as an AmazonEC2 instance, with a Provisioned IOPS volumeType . For more information, see Using the Amazon Web Services Price List API in the Billing User Guide.
Package cloud9 provides the API client, operations, and parameter types for AWS Cloud9. Cloud9 is a collection of tools that you can use to code, build, run, test, debug, and release software in the cloud. For more information about Cloud9, see the Cloud9 User Guide. Cloud9 supports these operations: CreateEnvironmentEC2 : Creates an Cloud9 development environment, launches an Amazon EC2 instance, and then connects from the instance to the environment. CreateEnvironmentMembership : Adds an environment member to an environment. DeleteEnvironment : Deletes an environment. If an Amazon EC2 instance is connected to the environment, also terminates the instance. DeleteEnvironmentMembership : Deletes an environment member from an environment. DescribeEnvironmentMemberships : Gets information about environment members for an environment. DescribeEnvironments : Gets information about environments. DescribeEnvironmentStatus : Gets status information for an environment. ListEnvironments : Gets a list of environment identifiers. ListTagsForResource : Gets the tags for an environment. TagResource : Adds tags to an environment. UntagResource : Removes tags from an environment. UpdateEnvironment : Changes the settings of an existing environment. UpdateEnvironmentMembership : Changes the settings of an existing environment member for an environment.
Package reform is a better ORM for Go, based on non-empty interfaces and code generation. See README (https://github.com/go-reform/reform/blob/main/README.md) for quickstart information. Querier object, embedded into DB and TX types, contains context which is used by all its methods. It defaults to context.Background() and can be changed with WithContext method: Methods Exec, Query, and QueryRow use the same context. Methods ExecContext, QueryContext, and QueryRowContext are just compatibility wrappers for Querier.WithContext(ctx).Exec/Query/QuyeryRow to satisfy various standard interfaces. DB object methods Begin and InTransaction start transaction with the same context. Methods BeginTx and InTransactionContext start transaction with a given context without changing DB's context: Note that several different contexts can be used: In theory, ctx1 and ctx2 can be entirely unrelated. Although that construct is occasionally useful, the behavior on context cancelation is entirely driver-defined; some drivers may just close the whole connection, effectively canceling unrelated ctx2 on ctx1 cancelation. For that reason mixing several contexts is not recommended. reform allows one to add tags (comments) to generated queries with WithTag Querier method. They can be used to track queries from RDBMS logs and tools back to application code. For example, this code: will generate the following query: Please keep in mind that dynamic tags can affect RDBMS query cache. Consult your RDBMS documentation for details. Some known links: This example shows some reform features. It uses https://github.com/AlekSi/pointer to get pointers to values of build-in types.
Package ojg is a collection of JSON tools including a validators, parsers, a full JSONPath implementation, data conversion utilities, and a simple type assembler. Most of the tools are designed for simple types although used in complex ways. Simple types in this context are data objects composed of these types. Package oj contains functions and types for parsing JSON as well as support for building simple types. Included in the oj package are: Package gen provides type safe generic types. They are type safe in that array and objects can only be constructed of other types in the package. The basic types are: The collection types are Array and Object. All the types implement the Node interface which is a relatively simple interface defined primarily to restrict what can be in the collection types. The Node interface should not be used to define new generic types. Also included in the package are a builder and parser that behave like the parser and builder in the oj package except for gen types. Package jp provides JSONPath implementation that operations on simple go types, generic (gen package), and public struct with public members. Get, set, and delete operations can be evaluated on data. When needed reflection is used to follow a path. The alt package contains functions and types for altering values. It includes functions for: The asm package provides a means of building JSON or the corresponding simple types based on a JSON script represented by the Plan type. The oj command is a general purpose tool for processing JSON documents. Features include reformatting JSON, colorizing JSON, extracting parts of a JSON document, and filtering. JSONPath is used for both extracting and filtering.
Package graph contains generic implementations of basic graph algorithms. The algorithms in this library can be applied to any graph data structure implementing the two Iterator methods: Order, which returns the number of vertices, and Visit, which iterates over the neighbors of a vertex. All algorithms operate on directed graphs with a fixed number of vertices, labeled from 0 to n-1, and edges with integer cost. An undirected edge {v, w} of cost c is represented by the two directed edges (v, w) and (w, v), both of cost c. A self-loop, an edge connecting a vertex to itself, is both directed and undirected. The type Mutable represents a directed graph with a fixed number of vertices and weighted edges that can be added or removed. The implementation uses hash maps to associate each vertex in the graph with its adjacent vertices. This gives constant time performance for all basic operations. The type Immutable is a compact representation of an immutable graph. The implementation uses lists to associate each vertex in the graph with its adjacent vertices. This makes for fast and predictable iteration: the Visit method produces its elements by reading from a fixed sorted precomputed list. This type supports multigraphs. The subpackage graph/build offers a tool for building virtual graphs. In a virtual graph no vertices or edges are stored in memory, they are instead computed as needed. New virtual graphs are constructed by composing and filtering a set of standard graphs, or by writing functions that describe the edges of a graph. The Basics example shows how to build a plain graph and how to efficiently use the Visit iterator, the key abstraction of this package. The DFS example contains a full implementation of depth-first search. Build a plain graph and visit all of its edges. Show how to use this package by implementing a complete depth-first search.
Package codeartifact provides the API client, operations, and parameter types for CodeArtifact. language-native package managers and build tools such as npm, Apache Maven, pip, and dotnet. You can use CodeArtifact to share packages with development teams and pull packages. Packages can be pulled from both public and CodeArtifact repositories. You can also create an upstream relationship between a CodeArtifact repository and another repository, which effectively merges their contents from the point of view of a package manager client. CodeArtifact concepts Repository: A CodeArtifact repository contains a set of package versions, each of which maps to a set of assets, or files. Repositories are polyglot, so a single repository can contain packages of any supported type. Each repository exposes endpoints for fetching and publishing packages using tools such as the npm CLI or the Maven CLI ( mvn ). For a list of supported package managers, see the CodeArtifact User Guide. Domain: Repositories are aggregated into a higher-level entity known as a domain. All package assets and metadata are stored in the domain, but are consumed through repositories. A given package asset, such as a Maven JAR file, is stored once per domain, no matter how many repositories it's present in. All of the assets and metadata in a domain are encrypted with the same customer master key (CMK) stored in Key Management Service (KMS). Each repository is a member of a single domain and can't be moved to a The domain allows organizational policy to be applied across multiple Although an organization can have multiple domains, we recommend a single In CodeArtifact, a package consists of: A name (for example, webpack is the name of a popular npm package) An optional namespace (for example, @types in @types/node ) A set of versions (for example, 1.0.0 , 1.0.1 , 1.0.2 , etc.) Package-level metadata (for example, npm tags) Package group: A group of packages that match a specified definition. Package groups can be used to apply configuration to multiple packages that match a defined pattern using package format, package namespace, and package name. You can use package groups to more conveniently configure package origin controls for multiple packages. Package origin controls are used to block or allow ingestion or publishing of new package versions, which protects users from malicious actions known as dependency substitution attacks. Package version: A version of a package, such as @types/node 12.6.9 . The version number format and semantics vary for different package formats. For example, npm package versions must conform to the Semantic Versioning specification. In CodeArtifact, a package version consists of the version identifier, metadata at the package version level, and a set of assets. Upstream repository: One repository is upstream of another when the package versions in it can be accessed from the repository endpoint of the downstream repository, effectively merging the contents of the two repositories from the point of view of a client. CodeArtifact allows creating an upstream relationship between two repositories. Asset: An individual file stored in CodeArtifact associated with a package version, such as an npm .tgz file or Maven POM and JAR files. CodeArtifact supported API operations AssociateExternalConnection : Adds an existing external connection to a repository. CopyPackageVersions : Copies package versions from one repository to another repository in the same domain. CreateDomain : Creates a domain. CreatePackageGroup : Creates a package group. CreateRepository : Creates a CodeArtifact repository in a domain. DeleteDomain : Deletes a domain. You cannot delete a domain that contains repositories. DeleteDomainPermissionsPolicy : Deletes the resource policy that is set on a domain. DeletePackage : Deletes a package and all associated package versions. DeletePackageGroup : Deletes a package group. Does not delete packages or package versions that are associated with a package group. DeletePackageVersions : Deletes versions of a package. After a package has been deleted, it can be republished, but its assets and metadata cannot be restored because they have been permanently removed from storage. DeleteRepository : Deletes a repository. DeleteRepositoryPermissionsPolicy : Deletes the resource policy that is set on a repository. DescribeDomain : Returns a DomainDescription object that contains information about the requested domain. DescribePackage : Returns a PackageDescriptionobject that contains details about a package. DescribePackageGroup : Returns a PackageGroupobject that contains details about a package group. DescribePackageVersion : Returns a PackageVersionDescriptionobject that contains details about a package version. DescribeRepository : Returns a RepositoryDescription object that contains detailed information about the requested repository. DisposePackageVersions : Disposes versions of a package. A package version with the status Disposed cannot be restored because they have been permanently removed from storage. DisassociateExternalConnection : Removes an existing external connection from a repository. GetAssociatedPackageGroup : Returns the most closely associated package group to the specified package. GetAuthorizationToken : Generates a temporary authorization token for accessing repositories in the domain. The token expires the authorization period has passed. The default authorization period is 12 hours and can be customized to any length with a maximum of 12 hours. GetDomainPermissionsPolicy : Returns the policy of a resource that is attached to the specified domain. GetPackageVersionAsset : Returns the contents of an asset that is in a package version. GetPackageVersionReadme : Gets the readme file or descriptive text for a package version. GetRepositoryEndpoint : Returns the endpoint of a repository for a specific package format. A repository has one endpoint for each package format: cargo generic maven npm nuget pypi ruby swift GetRepositoryPermissionsPolicy : Returns the resource policy that is set on a repository. ListAllowedRepositoriesForGroup : Lists the allowed repositories for a package group that has origin configuration set to ALLOW_SPECIFIC_REPOSITORIES . ListAssociatedPackages : Returns a list of packages associated with the requested package group. ListDomains : Returns a list of DomainSummary objects. Each returned DomainSummary object contains information about a domain. ListPackages : Lists the packages in a repository. ListPackageGroups : Returns a list of package groups in the requested domain. ListPackageVersionAssets : Lists the assets for a given package version. ListPackageVersionDependencies : Returns a list of the direct dependencies for a package version. ListPackageVersions : Returns a list of package versions for a specified package in a repository. ListRepositories : Returns a list of repositories owned by the Amazon Web Services account that called this method. ListRepositoriesInDomain : Returns a list of the repositories in a domain. ListSubPackageGroups : Returns a list of direct children of the specified package group. PublishPackageVersion : Creates a new package version containing one or more assets. PutDomainPermissionsPolicy : Attaches a resource policy to a domain. PutPackageOriginConfiguration : Sets the package origin configuration for a package, which determine how new versions of the package can be added to a specific repository. PutRepositoryPermissionsPolicy : Sets the resource policy on a repository that specifies permissions to access it. UpdatePackageGroup : Updates a package group. This API cannot be used to update a package group's origin configuration or pattern. UpdatePackageGroupOriginConfiguration : Updates the package origin configuration for a package group. UpdatePackageVersionsStatus : Updates the status of one or more versions of a package. UpdateRepository : Updates the properties of a repository.
Package monkit is a flexible code instrumenting and data collection library. I'm going to try and sell you as fast as I can on this library. Example usage We've got tools that capture distribution information (including quantiles) about int64, float64, and bool types. We have tools that capture data about events (we've got meters for deltas, rates, etc). We have rich tools for capturing information about tasks and functions, and literally anything that can generate a name and a number. Almost just as importantly, the amount of boilerplate and code you have to write to get these features is very minimal. Data that's hard to measure probably won't get measured. This data can be collected and sent to Graphite (http://graphite.wikidot.com/) or any other time-series database. Here's a selection of live stats from one of our storage nodes: This library generates call graphs of your live process for you. These call graphs aren't created through sampling. They're full pictures of all of the interesting functions you've annotated, along with quantile information about their successes, failures, how often they panic, return an error (if so instrumented), how many are currently running, etc. The data can be returned in dot format, in json, in text, and can be about just the functions that are currently executing, or all the functions the monitoring system has ever seen. Here's another example of one of our production nodes: https://raw.githubusercontent.com/spacemonkeygo/monkit/master/images/callgraph2.png This library generates trace graphs of your live process for you directly, without requiring standing up some tracing system such as Zipkin (though you can do that too). Inspired by Google's Dapper (http://research.google.com/pubs/pub36356.html) and Twitter's Zipkin (http://zipkin.io), we have process-internal trace graphs, triggerable by a number of different methods. You get this trace information for free whenever you use Go contexts (https://blog.golang.org/context) and function monitoring. The output formats are svg and json. Additionally, the library supports trace observation plugins, and we've written a plugin that sends this data to Zipkin (http://github.com/spacemonkeygo/monkit-zipkin). https://raw.githubusercontent.com/spacemonkeygo/monkit/master/images/trace.png Before our crazy Go rewrite of everything (https://www.spacemonkey.com/blog/posts/go-space-monkey) (and before we had even seen Google's Dapper paper), we were a Python shop, and all of our "interesting" functions were decorated with a helper that collected timing information and sent it to Graphite. When we transliterated to Go, we wanted to preserve that functionality, so the first version of our monitoring package was born. Over time it started to get janky, especially as we found Zipkin and started adding tracing functionality to it. We rewrote all of our Go code to use Google contexts, and then realized we could get call graph information. We decided a refactor and then an all-out rethinking of our monitoring package was best, and so now we have this library. Sometimes you really want callstack contextual information without having to pass arguments through everything on the call stack. In other languages, many people implement this with thread-local storage. Example: let's say you have written a big system that responds to user requests. All of your libraries log using your log library. During initial development everything is easy to debug, since there's low user load, but now you've scaled and there's OVER TEN USERS and it's kind of hard to tell what log lines were caused by what. Wouldn't it be nice to add request ids to all of the log lines kicked off by that request? Then you could grep for all log lines caused by a specific request id. Geez, it would suck to have to pass all contextual debugging information through all of your callsites. Google solved this problem by always passing a context.Context interface through from call to call. A Context is basically just a mapping of arbitrary keys to arbitrary values that users can add new values for. This way if you decide to add a request context, you can add it to your Context and then all callsites that decend from that place will have the new data in their contexts. It is admittedly very verbose to add contexts to every function call. Painfully so. I hope to write more about it in the future, but Google also wrote up their thoughts about it (https://blog.golang.org/context), which you can go read. For now, just swallow your disgust and let's keep moving. Let's make a super simple Varnish (https://www.varnish-cache.org/) clone. Open up gedit! (Okay just kidding, open whatever text editor you want.) For this motivating program, we won't even add the caching, though there's comments for where to add it if you'd like. For now, let's just make a barebones system that will proxy HTTP requests. We'll call it VLite, but maybe we should call it VReallyLite. Run and build this and open localhost:8080 in your browser. If you use the default proxy target, it should inform you that the world hasn't been destroyed yet. The first thing you'll want to do is add the small amount of boilerplate to make the instrumentation we're going to add to your process observable later. Import the basic monkit packages: and then register environmental statistics and kick off a goroutine in your main method to serve debug requests: Rebuild, and then check out localhost:9000/stats (or localhost:9000/stats/json, if you prefer) in your browser! Remember what I said about Google's contexts (https://blog.golang.org/context)? It might seem a bit overkill for such a small project, but it's time to add them. To help out here, I've created a library that constructs contexts for you for incoming HTTP requests. Nothing that's about to happen requires my webhelp library (https://godoc.org/github.com/jtolds/webhelp), but here is the code now refactored to receive and pass contexts through our two per-request calls. You can create a new context for a request however you want. One reason to use something like webhelp is that the cancelation feature of Contexts is hooked up to the HTTP request getting canceled. Let's start to get statistics about how many requests we receive! First, this package (main) will need to get a monitoring Scope. Add this global definition right after all your imports, much like you'd create a logger with many logging libraries: Now, make the error return value of HandleHTTP named (so, (err error)), and add this defer line as the very first instruction of HandleHTTP: Let's also add the same line (albeit modified for the lack of error) to Proxy, replacing &err with nil: You should now have something like: We'll unpack what's going on here, but for now: For this new funcs dataset, if you want a graph, you can download a dot graph at localhost:9000/funcs/dot and json information from localhost:9000/funcs/json. You should see something like: with a similar report for the Proxy method, or a graph like: https://raw.githubusercontent.com/spacemonkeygo/monkit/master/images/handlehttp.png This data reports the overall callgraph of execution for known traces, along with how many of each function are currently running, the most running concurrently (the highwater), how many were successful along with quantile timing information, how many errors there were (with quantile timing information if applicable), and how many panics there were. Since the Proxy method isn't capturing a returned err value, and since HandleHTTP always returns nil, this example won't ever have failures. If you're wondering about the success count being higher than you expected, keep in mind your browser probably requested a favicon.ico. Cool, eh? How it works is an interesting line of code - there's three function calls. If you look at the Go spec, all of the function calls will run at the time the function starts except for the very last one. The first function call, mon.Task(), creates or looks up a wrapper around a Func. You could get this yourself by requesting mon.Func() inside of the appropriate function or mon.FuncNamed(). Both mon.Task() and mon.Func() are inspecting runtime.Caller to determine the name of the function. Because this is a heavy operation, you can actually store the result of mon.Task() and reuse it somehow else if you prefer, so instead of you could instead use which is more performant every time after the first time. runtime.Caller only gets called once. Careful! Don't use the same myFuncMon in different functions unless you want to screw up your statistics! The second function call starts all the various stop watches and bookkeeping to keep track of the function. It also mutates the context pointer it's given to extend the context with information about what current span (in Zipkin parlance) is active. Notably, you *can* pass nil for the context if you really don't want a context. You just lose callgraph information. The last function call stops all the stop watches ad makes a note of any observed errors or panics (it repanics after observing them). Turns out, we don't even need to change our program anymore to get rich tracing information! Open your browser and go to localhost:9000/trace/svg?regex=HandleHTTP. It won't load, and in fact, it's waiting for you to open another tab and refresh localhost:8080 again. Once you retrigger the actual application behavior, the trace regex will capture a trace starting on the first function that matches the supplied regex, and return an svg. Go back to your first tab, and you should see a relatively uninteresting but super promising svg. Let's make the trace more interesting. Add a to your HandleHTTP method, rebuild, and restart. Load localhost:8080, then start a new request to your trace URL, then reload localhost:8080 again. Flip back to your trace, and you should see that the Proxy method only takes a portion of the time of HandleHTTP! https://cdn.rawgit.com/spacemonkeygo/monkit/master/images/trace.svg There's multiple ways to select a trace. You can select by regex using the preselect method (default), which first evaluates the regex on all known functions for sanity checking. Sometimes, however, the function you want to trace may not yet be known to monkit, in which case you'll want to turn preselection off. You may have a bad regex, or you may be in this case if you get the error "Bad Request: regex preselect matches 0 functions." Another way to select a trace is by providing a trace id, which we'll get to next! Make sure to check out what the addition of the time.Sleep call did to the other reports. It's easy to write plugins for monkit! Check out our first one that exports data to Zipkin (http://zipkin.io/)'s Scribe API: https://github.com/spacemonkeygo/monkit-zipkin We plan to have more (for HTrace, OpenTracing, etc, etc), soon!
Package ftpserver provides all the tools to build your own FTP server: The core library and the driver.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. If you currently use the $GOPATH scheme, install the package with the following command. To test the installation, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package outposts provides the API client, operations, and parameter types for AWS Outposts. Amazon Web Services Outposts is a fully managed service that extends Amazon Web Services infrastructure, APIs, and tools to customer premises. By providing local access to Amazon Web Services managed infrastructure, Amazon Web Services Outposts enables customers to build and run applications on premises using the same programming interfaces as in Amazon Web Services Regions, while using local compute and storage resources for lower latency and local data processing needs.
Package pointer implements Andersen's analysis, an inclusion-based pointer analysis algorithm first described in (Andersen, 1994). A pointer analysis relates every pointer expression in a whole program to the set of memory locations to which it might point. This information can be used to construct a call graph of the program that precisely represents the destinations of dynamic function and method calls. It can also be used to determine, for example, which pairs of channel operations operate on the same channel. The package allows the client to request a set of expressions of interest for which the points-to information will be returned once the analysis is complete. In addition, the client may request that a callgraph is constructed. The example program in example_test.go demonstrates both of these features. Clients should not request more information than they need since it may increase the cost of the analysis significantly. Our algorithm is INCLUSION-BASED: the points-to sets for x and y will be related by pts(y) ⊇ pts(x) if the program contains the statement y = x. It is FLOW-INSENSITIVE: it ignores all control flow constructs and the order of statements in a program. It is therefore a "MAY ALIAS" analysis: its facts are of the form "P may/may not point to L", not "P must point to L". It is FIELD-SENSITIVE: it builds separate points-to sets for distinct fields, such as x and y in struct { x, y *int }. It is mostly CONTEXT-INSENSITIVE: most functions are analyzed once, so values can flow in at one call to the function and return out at another. Only some smaller functions are analyzed with consideration of their calling context. It has a CONTEXT-SENSITIVE HEAP: objects are named by both allocation site and context, so the objects returned by two distinct calls to f: are distinguished up to the limits of the calling context. It is a WHOLE PROGRAM analysis: it requires SSA-form IR for the complete Go program and summaries for native code. See the (Hind, PASTE'01) survey paper for an explanation of these terms. The analysis is fully sound when invoked on pure Go programs that do not use reflection or unsafe.Pointer conversions. In other words, if there is any possible execution of the program in which pointer P may point to object O, the analysis will report that fact. By default, the "reflect" library is ignored by the analysis, as if all its functions were no-ops, but if the client enables the Reflection flag, the analysis will make a reasonable attempt to model the effects of calls into this library. However, this comes at a significant performance cost, and not all features of that library are yet implemented. In addition, some simplifying approximations must be made to ensure that the analysis terminates; for example, reflection can be used to construct an infinite set of types and values of those types, but the analysis arbitrarily bounds the depth of such types. Most but not all reflection operations are supported. In particular, addressable reflect.Values are not yet implemented, so operations such as (reflect.Value).Set have no analytic effect. The pointer analysis makes no attempt to understand aliasing between the operand x and result y of an unsafe.Pointer conversion: It is as if the conversion allocated an entirely new object: The analysis cannot model the aliasing effects of functions written in languages other than Go, such as runtime intrinsics in C or assembly, or code accessed via cgo. The result is as if such functions are no-ops. However, various important intrinsics are understood by the analysis, along with built-ins such as append. The analysis currently provides no way for users to specify the aliasing effects of native code. ------------------------------------------------------------------------ The remaining documentation is intended for package maintainers and pointer analysis specialists. Maintainers should have a solid understanding of the referenced papers (especially those by H&L and PKH) before making making significant changes. The implementation is similar to that described in (Pearce et al, PASTE'04). Unlike many algorithms which interleave constraint generation and solving, constructing the callgraph as they go, this implementation for the most part observes a phase ordering (generation before solving), with only simple (copy) constraints being generated during solving. (The exception is reflection, which creates various constraints during solving as new types flow to reflect.Value operations.) This improves the traction of presolver optimisations, but imposes certain restrictions, e.g. potential context sensitivity is limited since all variants must be created a priori. A type is said to be "pointer-like" if it is a reference to an object. Pointer-like types include pointers and also interfaces, maps, channels, functions and slices. We occasionally use C's x->f notation to distinguish the case where x is a struct pointer from x.f where is a struct value. Pointer analysis literature (and our comments) often uses the notation dst=*src+offset to mean something different than what it means in Go. It means: for each node index p in pts(src), the node index p+offset is in pts(dst). Similarly *dst+offset=src is used for store constraints and dst=src+offset for offset-address constraints. Nodes are the key datastructure of the analysis, and have a dual role: they represent both constraint variables (equivalence classes of pointers) and members of points-to sets (things that can be pointed at, i.e. "labels"). Nodes are naturally numbered. The numbering enables compact representations of sets of nodes such as bitvectors (or BDDs); and the ordering enables a very cheap way to group related nodes together. For example, passing n parameters consists of generating n parallel constraints from caller+i to callee+i for 0<=i<n. The zero nodeid means "not a pointer". For simplicity, we generate flow constraints even for non-pointer types such as int. The pointer equivalence (PE) presolver optimization detects which variables cannot point to anything; this includes not only all variables of non-pointer types (such as int) but also variables of pointer-like types if they are always nil, or are parameters to a function that is never called. Each node represents a scalar part of a value or object. Aggregate types (structs, tuples, arrays) are recursively flattened out into a sequential list of scalar component types, and all the elements of an array are represented by a single node. (The flattening of a basic type is a list containing a single node.) Nodes are connected into a graph with various kinds of labelled edges: simple edges (or copy constraints) represent value flow. Complex edges (load, store, etc) trigger the creation of new simple edges during the solving phase. Conceptually, an "object" is a contiguous sequence of nodes denoting an addressable location: something that a pointer can point to. The first node of an object has a non-nil obj field containing information about the allocation: its size, context, and ssa.Value. Objects include: Many objects have no Go types. For example, the func, map and chan type kinds in Go are all varieties of pointers, but their respective objects are actual functions (executable code), maps (hash tables), and channels (synchronized queues). Given the way we model interfaces, they too are pointers to "tagged" objects with no Go type. And an *ssa.Global denotes the address of a global variable, but the object for a Global is the actual data. So, the types of an ssa.Value that creates an object is "off by one indirection": a pointer to the object. The individual nodes of an object are sometimes referred to as "labels". For uniformity, all objects have a non-zero number of fields, even those of the empty type struct{}. (All arrays are treated as if of length 1, so there are no empty arrays. The empty tuple is never address-taken, so is never an object.) An tagged object has the following layout: The T node's typ field is the dynamic type of the "payload": the value v which follows, flattened out. The T node's obj has the otTagged flag. Tagged objects are needed when generalizing across types: interfaces, reflect.Values, reflect.Types. Each of these three types is modelled as a pointer that exclusively points to tagged objects. Tagged objects may be indirect (obj.flags ⊇ {otIndirect}) meaning that the value v is not of type T but *T; this is used only for reflect.Values that represent lvalues. (These are not implemented yet.) Variables of the following "scalar" types may be represented by a single node: basic types, pointers, channels, maps, slices, 'func' pointers, interfaces. Pointers: Nothing to say here, oddly. Basic types (bool, string, numbers, unsafe.Pointer): Currently all fields in the flattening of a type, including non-pointer basic types such as int, are represented in objects and values. Though non-pointer nodes within values are uninteresting, non-pointer nodes in objects may be useful (if address-taken) because they permit the analysis to deduce, in this example, that p points to s.x. If we ignored such object fields, we could only say that p points somewhere within s. All other basic types are ignored. Expressions of these types have zero nodeid, and fields of these types within aggregate other types are omitted. unsafe.Pointers are not modelled as pointers, so a conversion of an unsafe.Pointer to *T is (unsoundly) treated equivalent to new(T). Channels: An expression of type 'chan T' is a kind of pointer that points exclusively to channel objects, i.e. objects created by MakeChan (or reflection). 'chan T' is treated like *T. *ssa.MakeChan is treated as equivalent to new(T). *ssa.Send and receive (*ssa.UnOp(ARROW)) and are equivalent to store Maps: An expression of type 'map[K]V' is a kind of pointer that points exclusively to map objects, i.e. objects created by MakeMap (or reflection). map K[V] is treated like *M where M = struct{k K; v V}. *ssa.MakeMap is equivalent to new(M). *ssa.MapUpdate is equivalent to *y=x where *y and x have type M. *ssa.Lookup is equivalent to y=x.v where x has type *M. Slices: A slice []T, which dynamically resembles a struct{array *T, len, cap int}, is treated as if it were just a *T pointer; the len and cap fields are ignored. *ssa.MakeSlice is treated like new([1]T): an allocation of a *ssa.Index on a slice is equivalent to a load. *ssa.IndexAddr on a slice returns the address of the sole element of the slice, i.e. the same address. *ssa.Slice is treated as a simple copy. Functions: An expression of type 'func...' is a kind of pointer that points exclusively to function objects. A function object has the following layout: There may be multiple function objects for the same *ssa.Function due to context-sensitive treatment of some functions. The first node is the function's identity node. Associated with every callsite is a special "targets" variable, whose pts() contains the identity node of each function to which the call may dispatch. Identity words are not otherwise used during the analysis, but we construct the call graph from the pts() solution for such nodes. The following block of contiguous nodes represents the flattened-out types of the parameters ("P-block") and results ("R-block") of the function object. The treatment of free variables of closures (*ssa.FreeVar) is like that of global variables; it is not context-sensitive. *ssa.MakeClosure instructions create copy edges to Captures. A Go value of type 'func' (i.e. a pointer to one or more functions) is a pointer whose pts() contains function objects. The valueNode() for an *ssa.Function returns a singleton for that function. Interfaces: An expression of type 'interface{...}' is a kind of pointer that points exclusively to tagged objects. All tagged objects pointed to by an interface are direct (the otIndirect flag is clear) and concrete (the tag type T is not itself an interface type). The associated ssa.Value for an interface's tagged objects may be an *ssa.MakeInterface instruction, or nil if the tagged object was created by an instrinsic (e.g. reflection). Constructing an interface value causes generation of constraints for all of the concrete type's methods; we can't tell a priori which ones may be called. TypeAssert y = x.(T) is implemented by a dynamic constraint triggered by each tagged object O added to pts(x): a typeFilter constraint if T is an interface type, or an untag constraint if T is a concrete type. A typeFilter tests whether O.typ implements T; if so, O is added to pts(y). An untagFilter tests whether O.typ is assignable to T,and if so, a copy edge O.v -> y is added. ChangeInterface is a simple copy because the representation of tagged objects is independent of the interface type (in contrast to the "method tables" approach used by the gc runtime). y := Invoke x.m(...) is implemented by allocating contiguous P/R blocks for the callsite and adding a dynamic rule triggered by each tagged object added to pts(x). The rule adds param/results copy edges to/from each discovered concrete method. (Q. Why do we model an interface as a pointer to a pair of type and value, rather than as a pair of a pointer to type and a pointer to value? A. Control-flow joins would merge interfaces ({T1}, {V1}) and ({T2}, {V2}) to make ({T1,T2}, {V1,V2}), leading to the infeasible and type-unsafe combination (T1,V2). Treating the value and its concrete type as inseparable makes the analysis type-safe.) Type parameters: Type parameters are not directly supported by the analysis. Calls to generic functions will be left as if they had empty bodies. Users of the package are expected to use the ssa.InstantiateGenerics builder mode when building code that uses or depends on code containing generics. reflect.Value: A reflect.Value is modelled very similar to an interface{}, i.e. as a pointer exclusively to tagged objects, but with two generalizations. 1. a reflect.Value that represents an lvalue points to an indirect (obj.flags ⊇ {otIndirect}) tagged object, which has a similar layout to an tagged object except that the value is a pointer to the dynamic type. Indirect tagged objects preserve the correct aliasing so that mutations made by (reflect.Value).Set can be observed. Indirect objects only arise when an lvalue is derived from an rvalue by indirection, e.g. the following code: Whether indirect or not, the concrete type of the tagged object corresponds to the user-visible dynamic type, and the existence of a pointer is an implementation detail. (NB: indirect tagged objects are not yet implemented) 2. The dynamic type tag of a tagged object pointed to by a reflect.Value may be an interface type; it need not be concrete. This arises in code such as this: pts(eface) is a singleton containing an interface{}-tagged object. That tagged object's payload is an interface{} value, i.e. the pts of the payload contains only concrete-tagged objects, although in this example it's the zero interface{} value, so its pts is empty. reflect.Type: Just as in the real "reflect" library, we represent a reflect.Type as an interface whose sole implementation is the concrete type, *reflect.rtype. (This choice is forced on us by go/types: clients cannot fabricate types with arbitrary method sets.) rtype instances are canonical: there is at most one per dynamic type. (rtypes are in fact large structs but since identity is all that matters, we represent them by a single node.) The payload of each *rtype-tagged object is an *rtype pointer that points to exactly one such canonical rtype object. We exploit this by setting the node.typ of the payload to the dynamic type, not '*rtype'. This saves us an indirection in each resolution rule. As an optimisation, *rtype-tagged objects are canonicalized too. Aggregate types: Aggregate types are treated as if all directly contained aggregates are recursively flattened out. Structs: *ssa.Field y = x.f creates a simple edge to y from x's node at f's offset. *ssa.FieldAddr y = &x->f requires a dynamic closure rule to create The nodes of a struct consist of a special 'identity' node (whose type is that of the struct itself), followed by the nodes for all the struct's fields, recursively flattened out. A pointer to the struct is a pointer to its identity node. That node allows us to distinguish a pointer to a struct from a pointer to its first field. Field offsets are logical field offsets (plus one for the identity node), so the sizes of the fields can be ignored by the analysis. (The identity node is non-traditional but enables the distinction described above, which is valuable for code comprehension tools. Typical pointer analyses for C, whose purpose is compiler optimization, must soundly model unsafe.Pointer (void*) conversions, and this requires fidelity to the actual memory layout using physical field offsets.) *ssa.Field y = x.f creates a simple edge to y from x's node at f's offset. *ssa.FieldAddr y = &x->f requires a dynamic closure rule to create Arrays: We model an array by an identity node (whose type is that of the array itself) followed by a node representing all the elements of the array; the analysis does not distinguish elements with different indices. Effectively, an array is treated like struct{elem T}, a load y=x[i] like y=x.elem, and a store x[i]=y like x.elem=y; the index i is ignored. A pointer to an array is pointer to its identity node. (A slice is also a pointer to an array's identity node.) The identity node allows us to distinguish a pointer to an array from a pointer to one of its elements, but it is rather costly because it introduces more offset constraints into the system. Furthermore, sound treatment of unsafe.Pointer would require us to dispense with this node. Arrays may be allocated by Alloc, by make([]T), by calls to append, and via reflection. Tuples (T, ...): Tuples are treated like structs with naturally numbered fields. *ssa.Extract is analogous to *ssa.Field. However, tuples have no identity field since by construction, they cannot be address-taken. There are three kinds of function call: Cases 1 and 2 apply equally to methods and standalone functions. Static calls: A static call consists three steps: A static function call is little more than two struct value copies between the P/R blocks of caller and callee: Context sensitivity: Static calls (alone) may be treated context sensitively, i.e. each callsite may cause a distinct re-analysis of the callee, improving precision. Our current context-sensitivity policy treats all intrinsics and getter/setter methods in this manner since such functions are small and seem like an obvious source of spurious confluences, though this has not yet been evaluated. Dynamic function calls: Dynamic calls work in a similar manner except that the creation of copy edges occurs dynamically, in a similar fashion to a pair of struct copies in which the callee is indirect: (Recall that the function object's P- and R-blocks are contiguous.) Interface method invocation: For invoke-mode calls, we create a params/results block for the callsite and attach a dynamic closure rule to the interface. For each new tagged object that flows to the interface, we look up the concrete method, find its function object, and connect its P/R blocks to the callsite's P/R blocks, adding copy edges to the graph during solving. Recording call targets: The analysis notifies its clients of each callsite it encounters, passing a CallSite interface. Among other things, the CallSite contains a synthetic constraint variable ("targets") whose points-to solution includes the set of all function objects to which the call may dispatch. It is via this mechanism that the callgraph is made available. Clients may also elect to be notified of callgraph edges directly; internally this just iterates all "targets" variables' pts(·)s. We implement Hash-Value Numbering (HVN), a pre-solver constraint optimization described in Hardekopf & Lin, SAS'07. This is documented in more detail in hvn.go. We intend to add its cousins HR and HU in future. The solver is currently a naive Andersen-style implementation; it does not perform online cycle detection, though we plan to add solver optimisations such as Hybrid- and Lazy- Cycle Detection from (Hardekopf & Lin, PLDI'07). It uses difference propagation (Pearce et al, SQC'04) to avoid redundant re-triggering of closure rules for values already seen. Points-to sets are represented using sparse bit vectors (similar to those used in LLVM and gcc), which are more space- and time-efficient than sets based on Go's built-in map type or dense bit vectors. Nodes are permuted prior to solving so that object nodes (which may appear in points-to sets) are lower numbered than non-object (var) nodes. This improves the density of the set over which the PTSs range, and thus the efficiency of the representation. Partly thanks to avoiding map iteration, the execution of the solver is 100% deterministic, a great help during debugging. Andersen, L. O. 1994. Program analysis and specialization for the C programming language. Ph.D. dissertation. DIKU, University of Copenhagen. David J. Pearce, Paul H. J. Kelly, and Chris Hankin. 2004. Efficient field-sensitive pointer analysis for C. In Proceedings of the 5th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and engineering (PASTE '04). ACM, New York, NY, USA, 37-42. http://doi.acm.org/10.1145/996821.996835 David J. Pearce, Paul H. J. Kelly, and Chris Hankin. 2004. Online Cycle Detection and Difference Propagation: Applications to Pointer Analysis. Software Quality Control 12, 4 (December 2004), 311-337. http://dx.doi.org/10.1023/B:SQJO.0000039791.93071.a2 David Grove and Craig Chambers. 2001. A framework for call graph construction algorithms. ACM Trans. Program. Lang. Syst. 23, 6 (November 2001), 685-746. http://doi.acm.org/10.1145/506315.506316 Ben Hardekopf and Calvin Lin. 2007. The ant and the grasshopper: fast and accurate pointer analysis for millions of lines of code. In Proceedings of the 2007 ACM SIGPLAN conference on Programming language design and implementation (PLDI '07). ACM, New York, NY, USA, 290-299. http://doi.acm.org/10.1145/1250734.1250767 Ben Hardekopf and Calvin Lin. 2007. Exploiting pointer and location equivalence to optimize pointer analysis. In Proceedings of the 14th international conference on Static Analysis (SAS'07), Hanne Riis Nielson and Gilberto Filé (Eds.). Springer-Verlag, Berlin, Heidelberg, 265-280. Atanas Rountev and Satish Chandra. 2000. Off-line variable substitution for scaling points-to analysis. In Proceedings of the ACM SIGPLAN 2000 conference on Programming language design and implementation (PLDI '00). ACM, New York, NY, USA, 47-56. DOI=10.1145/349299.349310 http://doi.acm.org/10.1145/349299.349310 This program demonstrates how to use the pointer analysis to obtain a conservative call-graph of a Go program. It also shows how to compute the points-to set of a variable, in this case, (C).f's ch parameter.
Package flow provides libraries and tools for building Go applications on Flow.
Package grafana provides the API client, operations, and parameter types for Amazon Managed Grafana. Amazon Managed Grafana is a fully managed and secure data visualization service that you can use to instantly query, correlate, and visualize operational metrics, logs, and traces from multiple sources. Amazon Managed Grafana makes it easy to deploy, operate, and scale Grafana, a widely deployed data visualization tool that is popular for its extensible data support. With Amazon Managed Grafana, you create logically isolated Grafana servers called workspaces. In a workspace, you can create Grafana dashboards and visualizations to analyze your metrics, logs, and traces without having to build, package, or deploy any hardware to run Grafana servers.
Package nacl is a pure Go implementation of the NaCL cryptography library. Compared with the implementation in golang.org/x/crypto/nacl, this library offers all of the API's present in NaCL, as well as some utilities for generating and loading keys and nonces, and encrypting messages. NaCl's goal is to provide all of the core operations needed to build higher-level cryptographic tools, as well as to demonstrate how to implement these tools in Go. Compared with the equivalent packages in the Go standard library and x/crypto package, we replace some function calls with their equivalents in this package, and make more use of return values (versus writing to a byte array specified at stdin). Most functions should be compatible with their C/C++ counterparts in the library here: https://nacl.cr.yp.to/. In many cases the tests are ported directly to this library.
Package gofpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates gofpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. gofpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. This repository will not be maintained, at least for some unknown duration. But it is hoped that gofpdf has a bright future in the open source world. Due to Go’s promise of compatibility, gofpdf should continue to function without modification for a longer time than would be the case with many other languages. Forks should be based on the last viable commit. Tools such as active-forks can be used to select a fork that looks promising for your needs. If a particular fork looks like it has taken the lead in attracting followers, this README will be updated to point people in that direction. The efforts of all contributors to this project have been deeply appreciated. Best wishes to all of you. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the gofpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the gofpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.Summary() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package graphql-go-tools is library to create GraphQL services using the go programming language. GraphQL is a query language for APIs and a runtime for fulfilling those queries with your existing data. GraphQL provides a complete and understandable description of the data in your API, gives clients the power to ask for exactly what they need and nothing more, makes it easier to evolve APIs over time, and enables powerful developer tools. Source: https://graphql.org This library is intended to be a set of low level building blocks to write high performance and secure GraphQL applications. Use cases could range from writing layer seven GraphQL proxies, firewalls, caches etc.. You would usually not use this library to write a GraphQL server yourself but to build tools for the GraphQL ecosystem. To achieve this goal the library has zero dependencies at its core functionality. It has a full implementation of the GraphQL AST and supports lexing, parsing, validation, normalization, introspection, query planning as well as query execution etc. With the execution package it's possible to write a fully functional GraphQL server that is capable to mediate between various protocols and formats. In it's current state you can use the following DataSources to resolve fields: - Static data (embed static data into a schema to extend a field in a simple way) - HTTP JSON APIs (combine multiple Restful APIs into one single GraphQL Endpoint, nesting is possible) - GraphQL APIs (you can combine multiple GraphQL APIs into one single GraphQL Endpoint, nesting is possible) - Webassembly/WASM Lambdas (e.g. resolve a field using a Rust lambda) If you're looking for a ready to use solution that has all this functionality packaged as a Gateway have a look at: https://wundergraph.com Created by Jens Neuse
Package datadog-api-client-go. This repository contains a Go API client for the Datadog API (https://docs.datadoghq.com/api/). • Go 1.22+ This repository contains per-major-version API client packages. Right now, Datadog has two API versions, v1, v2 and the common package. The client library for Datadog API v1 is located in the api/datadogV1 directory. Import it with The client library for Datadog API v2 is located in the api/datadogV2 directory. Import it with The datadog package for Datadog API is located in the api/datadog directory. Import it with Here's an example creating a user: Save it to example.go, then run go get github.com/DataDog/datadog-api-client-go/v2. Set the DD_CLIENT_API_KEY and DD_CLIENT_APP_KEY to your Datadog credentials, and then run go run example.go. This client includes access to Datadog API endpoints while they are in an unstable state and may undergo breaking changes. An extra configuration step is required to enable these endpoints: where <OperationName> is the name of the method used to interact with that endpoint. For example: GetLogsIndex, or UpdateLogsIndex When talking to a different server, like the eu instance, change the ContextServerVariables: If you want to disable GZIP compressed responses, set the compress flag on your configuration object: If you want to enable requests logging, set the debug flag on your configuration object: If you want to enable retry when getting status code 429 rate-limited, set EnableRetry to true The default max retry is 3, you can change it with MaxRetries If you want to configure proxy, set env var HTTP_PROXY, and HTTPS_PROXY or set custom HTTPClient with proxy configured on configuration object: Several listing operations have a pagination method to help consume all the items available. For example, to retrieve all your incidents: Encoder/Decoder By default, datadog-api-client-go uses the Go standard library enconding/json (https://pkg.go.dev/encoding/json) to encode and decode data. As an alternative users can opt in to use goccy/go-json (https://github.com/goccy/go-json) by specifying the go build tag goccy_gojson. In comparison, there was a significant decrease in cpu time with goccy/go-json with an increase in memory overhead. For further benchmark information, see goccy/go-json benchmark (https://github.com/goccy/go-json#benchmarks) section. Developer documentation for API endpoints and models is available on Github pages (https://datadoghq.dev/datadog-api-client-go/pkg/github.com/DataDog/datadog-api-client-go/v2/). Released versions are available on pkg.go.dev (https://pkg.go.dev/github.com/DataDog/datadog-api-client-go/v2). As most of the code in this repository is generated, we will only accept PRs for files that are not modified by our code-generation machinery (changes to the generated files would get overwritten). We happily accept contributions to files that are not autogenerated, such as tests and development tooling. support@datadoghq.com
Package gomarkdoc formats documentation for one or more packages as markdown for usage outside of the main https://pkg.go.dev site. It supports custom templates for tweaking representation of documentation at fine-grained levels, exporting both exported and unexported symbols, and custom formatters for different backends. If you want to use this package as a command-line tool, you can install the command by running the following on go 1.16+: For older versions of go, you can install using the following method instead: The command line tool supports configuration for all of the features of the importable package: The gomarkdoc command processes each of the provided packages, generating documentation for the package in markdown format and writing it to console. For example, if you have a package in your current directory and want to send it to a documentation markdown file, you might do something like this: The gomarkdoc tool supports generating documentation for both local packages and remote ones. To specify a local package, start the name of the package with a period (.) or specify an absolute path on the filesystem. All other package signifiers are assumed to be remote packages. You may specify both local and remote packages in the same command invocation as separate arguments. If you have a project with many packages but you want to skip documentation generation for some, you can use the --exclude-dirs option. This will remove any matching directories from the list of directories to process. Excluded directories are specified using the same pathing syntax as the packages to process. Multiple expressions may be comma-separated or specified by using the --exclude-dirs flag multiple times. For example, in this repository we generate documentation for the entire project while excluding our test packages by running: By default, the documentation generated by the gomarkdoc command is sent to standard output, where it can be redirected to a file. This can be useful if you want to perform additional modifications to the documentation or send it somewhere other than a file. However, keep in mind that there are some inconsistencies in how various shells/platforms handle redirected command output (for example, Powershell encodes in UTF-16, not UTF-8). As a result, the --output option described below is recommended for most use cases. If you want to redirect output for each processed package to a file, you can provide the --output/-o option, which accepts a template specifying how to generate the path of the output file. A common usage of this option is when generating README documentation for a package with subpackages (which are supported via the ... signifier as in other parts of the golang toolchain). In addition, this option provides consistent behavior across platforms and shells: You can see all of the data available to the output template in the PackageSpec struct in the github.com/princjef/gomarkdoc/cmd/gomarkdoc package. The documentation information that is output is formatted using a series of text templates for the various components of the overall documentation which get generated. Higher level templates contain lower level templates, but any template may be replaced with an override template using the --template/-t option. The full list of templates that may be overridden are: file: generates documentation for a file containing one or more packages, depending on how the tool is configured. This is the root template for documentation generation. package: generates documentation for an entire package. type: generates documentation for a single type declaration, as well as any related functions/methods. func: generates documentation for a single function or method. It may be referenced from within a type, or directly in the package, depending on nesting. value: generates documentation for a single variable or constant declaration block within a package. index: generates an index of symbols within a package, similar to what is seen for godoc.org. The index links to types, funcs, variables, and constants generated by other templates, so it may need to be overridden as well if any of those templates are changed in a material way. example: generates documentation for a single example for a package or one of its symbols. The example is generated alongside whichever symbol it represents, based on the standard naming conventions outlined in https://blog.golang.org/examples#TOC_4. doc: generates the freeform documentation block for any of the above structures that can contain a documentation section. import: generates the import code used to pull in a package. Overriding with the --template-file option uses a key-value pair mapping a template name to the file containing the contents of the override template to use. Specified template files must exist: As with the godoc tool itself, only exported symbols will be shown in documentation. This can be expanded to include all symbols in a package by adding the --include-unexported/-u flag. If you want to blend the documentation generated by gomarkdoc with your own hand-written markdown, you can use the --embed/-e flag to change the gomarkdoc tool into an append/embed mode. When documentation is generated, gomarkdoc looks for a file in the location where the documentation is to be written and embeds the documentation if present. Otherwise, the documentation is appended to the end of the file. When running with embed mode enabled, gomarkdoc will look for either this single comment: Or the following pair of comments (in which case all content in between is replaced): If you would like to include files that are part of a build tag, you can specify build tags with the --tags flag. Tags are also supported through GOFLAGS, though command line and configuration file definitions override tags specified through GOFLAGS. You can also run gomarkdoc in a verification mode with the --check/-c flag. This is particularly useful for continuous integration when you want to make sure that a commit correctly updated the generated documentation. This flag is only supported when the --output/-o flag is specified, as the file provided there is what the tool is checking: If you're experiencing difficulty with gomarkdoc or just want to get more information about how it's executing underneath, you can add -v to show more logs. This can be chained a second time to show even more verbose logs: Some features of gomarkdoc rely on being able to detect information from the git repository containing the project. Since individual local git repositories may be configured differently from person to person, you may want to manually specify the information for the repository to remove any inconsistencies. This can be achieved with the --repository.url, --repository.default-branch and --repository.path options. For example, this repository would be configured with: If you want to reuse configuration options across multiple invocations, you can specify a file in the folder where you invoke gomarkdoc containing configuration information that you would otherwise provide on the command line. This file may be a JSON, TOML, YAML, HCL, env, or Java properties file, but the name is expected to start with .gomarkdoc (e.g. .gomarkdoc.yml). All configuration options are available with the camel-cased form of their long name (e.g. --include-unexported becomes includeUnexported). Template overrides are specified as a map, rather than a set of key-value pairs separated by =. Options provided on the command line override those provided in the configuration file if an option is present in both. While most users will find the command line utility sufficient for their needs, this package may also be used programmatically by installing it directly, rather than its command subpackage. The programmatic usage provides more flexibility when selecting what packages to work with and what components to generate documentation for. A common usage will look something like this: This project uses itself to generate the README files in github.com/princjef/gomarkdoc and its subdirectories. To see the commands that are run to generate documentation for this repository, take a look at the Doc() and DocVerify() functions in magefile.go and the .gomarkdoc.yml file in the root of this repository. To run these commands in your own project, simply replace `go run ./cmd/gomarkdoc` with `gomarkdoc`. Know of another project that is using gomarkdoc? Open an issue with a description of the project and link to the repository and it might be featured here!
Package fpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates go-pdf/fpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. go-pdf/fpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the go-pdf/fpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the go-pdf/fpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.SummaryCompare() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package uplink is the main entrypoint to interacting with Storj Labs' decentralized storage network. Sign up for an account on a Satellite today! https://storj.io/ The fundamental unit of access in the Storj Labs storage network is the Access Grant. An access grant is a serialized structure that is internally comprised of an API Key, a set of encryption key information, and information about which Storj Labs or Tardigrade network Satellite is responsible for the metadata. An access grant is always associated with exactly one Project on one Satellite. If you don't already have an access grant, you will need make an account on a Satellite, generate an API Key, and encapsulate that API Key with encryption information into an access grant. If you don't already have an account on a Satellite, first make one at https://storj.io/ and note the Satellite you choose (such as us1.storj.io, eu1.storj.io, etc). Then, make an API Key in the web interface. The first step to any project is to generate a restricted access grant with the minimal permissions that are needed. Access grants contains all encryption information and they should be restricted as much as possible. To make an access grant, you can create one using our Uplink CLI tool's 'share' subcommand (after setting up the Uplink CLI tool), or you can make one as follows: In the above example, 'serializedAccess' is a human-readable string that represents read-only access to just the "logs" bucket, and is only able to decrypt that one bucket thanks to hierarchical deterministic key derivation. Note: RequestAccessWithPassphrase is CPU-intensive, and your application's normal lifecycle should avoid it and use ParseAccess where possible instead. To revoke an access grant see the Project.RevokeAccess method. A common architecture for building applications is to have a single bucket for the entire application to store the objects of all users. In such architecture, it is of utmost importance to guarantee that users can access only their objects but not the objects of other users. This can be achieved by implementing an app-specific authentication service that generates an access grant for each user by restricting the main access grant of the application. This user-specific access grant is restricted to access the objects only within a specific key prefix defined for the user. When initialized, the authentication server creates the main application access grant with an empty passphrase as follows. The authentication service does not hold any encryption information about users, so the passphrase used to request the main application access grant does not matter. The encryption keys related to user objects will be overridden in a next step on the client-side. It is important that once set to a specific value, this passphrase never changes in the future. Therefore, the best practice is to use an empty passphrase. Whenever a user is authenticated, the authentication service generates the user-specific access grant as follows: The userID is something that uniquely identifies the users in the application and must never change. Along with the user access grant, the authentication service should return a user-specific salt. The salt must be always the same for this user. The salt size is 16-byte or 32-byte. Once the application receives the user-specific access grant and the user-specific salt from the authentication service, it has to override the encryption key in the access grant, so users can encrypt and decrypt their files with encryption keys derived from their passphrase. The user-specific access grant is now ready to use by the application. Once you have a valid access grant, you can open a Project with the access that access grant allows for. Projects allow you to manage buckets and objects within buckets. A bucket represents a collection of objects. You can upload, download, list, and delete objects of any size or shape. Objects within buckets are represented by keys, where keys can optionally be listed using the "/" delimiter. Note: Objects and object keys within buckets are end-to-end encrypted, but bucket names themselves are not encrypted, so the billing interface on the Satellite can show you bucket line items. Objects support a couple kilobytes of arbitrary key/value metadata, and arbitrary-size primary data streams with the ability to read at arbitrary offsets. If you want to access only a small subrange of the data you uploaded, you can use `uplink.DownloadOptions` to specify the download range. Listing objects returns an iterator that allows to walk through all the items:
Package gomk helps to write build scripts in Go for projects where just running 'go build' is not enough. Instead of using platform-specific tools, a build script written in Go can better ensure platform independence. gomk is built around the core concepts of [Project], [Goal] and [Action]. The details are described in sub package gomkore. This packge wraps the code model from gomkore with a user-friendly API for building projects (see Edit). gomk is just a Go library. Is can be used in any context of reasonable programming with Go. But gomk is not a comprehensive library for all types of project builds. It is focussed on the fundamentals of a build system. Specific applications shall be implemented in separate libraries, such as gomk-lib. Nevertheless, a few conventions can be helpful. A build script is a Go executable. As such it cannot be used by other packages (using plugins is not considered, primarily for not generally being portable). The build scripts of a project must not collide with the rest of the code. Here are a few ideas for structuring the build scripts: Build with Build with
Package monkit is a flexible code instrumenting and data collection library. I'm going to try and sell you as fast as I can on this library. Example usage We've got tools that capture distribution information (including quantiles) about int64, float64, and bool types. We have tools that capture data about events (we've got meters for deltas, rates, etc). We have rich tools for capturing information about tasks and functions, and literally anything that can generate a name and a number. Almost just as importantly, the amount of boilerplate and code you have to write to get these features is very minimal. Data that's hard to measure probably won't get measured. This data can be collected and sent to Graphite (http://graphite.wikidot.com/) or any other time-series database. Here's a selection of live stats from one of our storage nodes: This library generates call graphs of your live process for you. These call graphs aren't created through sampling. They're full pictures of all of the interesting functions you've annotated, along with quantile information about their successes, failures, how often they panic, return an error (if so instrumented), how many are currently running, etc. The data can be returned in dot format, in json, in text, and can be about just the functions that are currently executing, or all the functions the monitoring system has ever seen. Here's another example of one of our production nodes: https://raw.githubusercontent.com/spacemonkeygo/monkit/master/images/callgraph2.png This library generates trace graphs of your live process for you directly, without requiring standing up some tracing system such as Zipkin (though you can do that too). Inspired by Google's Dapper (http://research.google.com/pubs/pub36356.html) and Twitter's Zipkin (http://zipkin.io), we have process-internal trace graphs, triggerable by a number of different methods. You get this trace information for free whenever you use Go contexts (https://blog.golang.org/context) and function monitoring. The output formats are svg and json. Additionally, the library supports trace observation plugins, and we've written a plugin that sends this data to Zipkin (http://github.com/spacemonkeygo/monkit-zipkin). https://raw.githubusercontent.com/spacemonkeygo/monkit/master/images/trace.png Before our crazy Go rewrite of everything (https://www.spacemonkey.com/blog/posts/go-space-monkey) (and before we had even seen Google's Dapper paper), we were a Python shop, and all of our "interesting" functions were decorated with a helper that collected timing information and sent it to Graphite. When we transliterated to Go, we wanted to preserve that functionality, so the first version of our monitoring package was born. Over time it started to get janky, especially as we found Zipkin and started adding tracing functionality to it. We rewrote all of our Go code to use Google contexts, and then realized we could get call graph information. We decided a refactor and then an all-out rethinking of our monitoring package was best, and so now we have this library. Sometimes you really want callstack contextual information without having to pass arguments through everything on the call stack. In other languages, many people implement this with thread-local storage. Example: let's say you have written a big system that responds to user requests. All of your libraries log using your log library. During initial development everything is easy to debug, since there's low user load, but now you've scaled and there's OVER TEN USERS and it's kind of hard to tell what log lines were caused by what. Wouldn't it be nice to add request ids to all of the log lines kicked off by that request? Then you could grep for all log lines caused by a specific request id. Geez, it would suck to have to pass all contextual debugging information through all of your callsites. Google solved this problem by always passing a context.Context interface through from call to call. A Context is basically just a mapping of arbitrary keys to arbitrary values that users can add new values for. This way if you decide to add a request context, you can add it to your Context and then all callsites that decend from that place will have the new data in their contexts. It is admittedly very verbose to add contexts to every function call. Painfully so. I hope to write more about it in the future, but Google also wrote up their thoughts about it (https://blog.golang.org/context), which you can go read. For now, just swallow your disgust and let's keep moving. Let's make a super simple Varnish (https://www.varnish-cache.org/) clone. Open up gedit! (Okay just kidding, open whatever text editor you want.) For this motivating program, we won't even add the caching, though there's comments for where to add it if you'd like. For now, let's just make a barebones system that will proxy HTTP requests. We'll call it VLite, but maybe we should call it VReallyLite. Run and build this and open localhost:8080 in your browser. If you use the default proxy target, it should inform you that the world hasn't been destroyed yet. The first thing you'll want to do is add the small amount of boilerplate to make the instrumentation we're going to add to your process observable later. Import the basic monkit packages: and then register environmental statistics and kick off a goroutine in your main method to serve debug requests: Rebuild, and then check out localhost:9000/stats (or localhost:9000/stats/json, if you prefer) in your browser! Remember what I said about Google's contexts (https://blog.golang.org/context)? It might seem a bit overkill for such a small project, but it's time to add them. To help out here, I've created a library that constructs contexts for you for incoming HTTP requests. Nothing that's about to happen requires my webhelp library (https://godoc.org/github.com/jtolds/webhelp), but here is the code now refactored to receive and pass contexts through our two per-request calls. You can create a new context for a request however you want. One reason to use something like webhelp is that the cancelation feature of Contexts is hooked up to the HTTP request getting canceled. Let's start to get statistics about how many requests we receive! First, this package (main) will need to get a monitoring Scope. Add this global definition right after all your imports, much like you'd create a logger with many logging libraries: Now, make the error return value of HandleHTTP named (so, (err error)), and add this defer line as the very first instruction of HandleHTTP: Let's also add the same line (albeit modified for the lack of error) to Proxy, replacing &err with nil: You should now have something like: We'll unpack what's going on here, but for now: For this new funcs dataset, if you want a graph, you can download a dot graph at localhost:9000/funcs/dot and json information from localhost:9000/funcs/json. You should see something like: with a similar report for the Proxy method, or a graph like: https://raw.githubusercontent.com/spacemonkeygo/monkit/master/images/handlehttp.png This data reports the overall callgraph of execution for known traces, along with how many of each function are currently running, the most running concurrently (the highwater), how many were successful along with quantile timing information, how many errors there were (with quantile timing information if applicable), and how many panics there were. Since the Proxy method isn't capturing a returned err value, and since HandleHTTP always returns nil, this example won't ever have failures. If you're wondering about the success count being higher than you expected, keep in mind your browser probably requested a favicon.ico. Cool, eh? How it works is an interesting line of code - there's three function calls. If you look at the Go spec, all of the function calls will run at the time the function starts except for the very last one. The first function call, mon.Task(), creates or looks up a wrapper around a Func. You could get this yourself by requesting mon.Func() inside of the appropriate function or mon.FuncNamed(). Both mon.Task() and mon.Func() are inspecting runtime.Caller to determine the name of the function. Because this is a heavy operation, you can actually store the result of mon.Task() and reuse it somehow else if you prefer, so instead of you could instead use which is more performant every time after the first time. runtime.Caller only gets called once. Careful! Don't use the same myFuncMon in different functions unless you want to screw up your statistics! The second function call starts all the various stop watches and bookkeeping to keep track of the function. It also mutates the context pointer it's given to extend the context with information about what current span (in Zipkin parlance) is active. Notably, you *can* pass nil for the context if you really don't want a context. You just lose callgraph information. The last function call stops all the stop watches ad makes a note of any observed errors or panics (it repanics after observing them). Turns out, we don't even need to change our program anymore to get rich tracing information! Open your browser and go to localhost:9000/trace/svg?regex=HandleHTTP. It won't load, and in fact, it's waiting for you to open another tab and refresh localhost:8080 again. Once you retrigger the actual application behavior, the trace regex will capture a trace starting on the first function that matches the supplied regex, and return an svg. Go back to your first tab, and you should see a relatively uninteresting but super promising svg. Let's make the trace more interesting. Add a to your HandleHTTP method, rebuild, and restart. Load localhost:8080, then start a new request to your trace URL, then reload localhost:8080 again. Flip back to your trace, and you should see that the Proxy method only takes a portion of the time of HandleHTTP! https://cdn.rawgit.com/spacemonkeygo/monkit/master/images/trace.svg There's multiple ways to select a trace. You can select by regex using the preselect method (default), which first evaluates the regex on all known functions for sanity checking. Sometimes, however, the function you want to trace may not yet be known to monkit, in which case you'll want to turn preselection off. You may have a bad regex, or you may be in this case if you get the error "Bad Request: regex preselect matches 0 functions." Another way to select a trace is by providing a trace id, which we'll get to next! Make sure to check out what the addition of the time.Sleep call did to the other reports. It's easy to write plugins for monkit! Check out our first one that exports data to Zipkin (http://zipkin.io/)'s Scribe API: https://github.com/spacemonkeygo/monkit-zipkin We plan to have more (for HTrace, OpenTracing, etc, etc), soon!
<h1 align="center">IrisAdmin</h1> [![Build Status](https://app.travis-ci.com/snowlyg/iris-admin.svg?branch=master)](https://app.travis-ci.com/snowlyg/iris-admin) [![LICENSE](https://img.shields.io/github/license/snowlyg/iris-admin)](https://github.com/snowlyg/iris-admin/blob/master/LICENSE) [![go doc](https://godoc.org/github.com/snowlyg/iris-admin?status.svg)](https://godoc.org/github.com/snowlyg/iris-admin) [![go report](https://goreportcard.com/badge/github.com/snowlyg/iris-admin)](https://goreportcard.com/badge/github.com/snowlyg/iris-admin) [![Build Status](https://codecov.io/gh/snowlyg/iris-admin/branch/master/graph/badge.svg)](https://codecov.io/gh/snowlyg/iris-admin) [简体中文](./README.md) | English #### Project url [GITHUB](https://github.com/snowlyg/iris-admin) | [GITEE](https://gitee.com/snowlyg/iris-admin) **** > This project just for learning golang, welcome to give your suggestions! #### Documentation - [IRIS-ADMIN-DOC](https://doc.snowlyg.com) - [IRIS V12 document for chinese](https://github.com/snowlyg/iris/wiki) - [godoc](https://pkg.go.dev/github.com/snowlyg/iris-admin?utm_source=godoc) [![Gitter](https://badges.gitter.im/iris-go-tenancy/community.svg)](https://gitter.im/iris-go-tenancy/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge) [![Join the chat at https://gitter.im/iris-go-tenancy/iris-admin](https://badges.gitter.im/iris-go-tenancy/iris-admin.svg)](https://gitter.im/iris-go-tenancy/iris-admin?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) #### BLOG - [REST API with iris-go web framework](https://blog.snowlyg.com/iris-go-api-1/) - [How to user iris-go with casbin](https://blog.snowlyg.com/iris-go-api-2/) --- #### Getting started - Get master package , Notice must use `master` version. ```sh ``` #### Program introduction ##### The project consists of multiple plugins, each with different functions - [viper_server] ```go package cache import ( ) var CONFIG Redis // getViperConfig get initialize config db: ` + db + ` addr: "` + CONFIG.Addr + `" password: "` + CONFIG.Password + `" pool-size: ` + poolSize), ``` - [zap_server] ```go ``` - [database] ```go ``` - [casbin] ```go ``` - [cache] ```go ``` - [operation] - [cron_server] ```go ``` - [web] - ```go // WebFunc web framework // - GetTestClient test client // - GetTestLogin test for login // - AddWebStatic add web static path // - AddUploadStatic add upload static path // - Run start ``` - [mongodb] #### Initialize database ##### Simple - Use gorm's `AutoMigrate()` function to auto migrate database. ```go package main import ( ) ``` ##### Custom migrate tools - Use `gormigrate` third party package. Tt's helpful for database migrate and program development. - Detail is see [iris-admin-cmd](https://github.com/snowlyg/iris-admin-example/blob/main/iris/cmd/main.go). --- - Add main.go file. ```go package main import ( ) ``` #### Run project - When you first run this cmd `go run main.go` , you can see some config files in the `config` directory, - and `rbac_model.conf` will be created in your project root directory. ```sh go run main.go ``` #### Module - You can use [iris-admin-rbac](https://github.com/snowlyg/iris-admin-rbac) package to add rbac function for your project quickly. - Your can use AddModule() to add other modules . ```go package main import ( ) ``` #### Default static file path - A static file access path has been built in by default - Static files will upload to `/static/upload` directory. - You can set this config key `static-path` to change the default directory. ```yaml system: ``` #### Use with front-end framework , e.g. vue - Default,you must build vue to the `dist` directory. - Naturally you can set this config key `web-path` to change the default directory. ```go package main import ( ) ``` #### Example - [iris](https://github.com/snowlyg/iris-admin-example/tree/main/iris) - [gin](https://github.com/snowlyg/iris-admin-example/tree/main/gin) #### RBAC - [iris-admin-rbac](https://github.com/snowlyg/iris-admin-rbac) #### Unit test and documentation - Before start unit tests, you need to set two system environment variables `mysqlPwd` and `mysqlAddr`,that will be used when running the test instance。 - helper/tests(https://github.com/snowlyg/helper/tree/main/tests) package the unit test used, it's simple package base on httpexpect/v2(https://github.com/gavv/httpexpect). - [example for unit test](https://github.com/snowlyg/iris-admin-rbac/tree/main/iris/perm/tests) - [example for unit test](https://github.com/snowlyg/iris-admin-rbac/tree/main/gin/authority/test) Before create a http api unit test , you need create a base test file named `main_test.go` , this file have some unit test step : ***Suggest use docker mysql, otherwise if the test fails, there will be a lot of test data left behind*** - 1.create database before test start and delete database when test finish. - 2.create tables and seed test data at once time. - 3.`PartyFunc` and `SeedFunc` use to custom someting for your test model. 内容如下所示: ***main_test.go*** ```go package test import ( ) var TestServer *web_gin.WebServer var TestClient *httptest.Client ``` ***index_test.go*** ```go package test import ( ) var ( ) ``` ## 🔋 JetBrains OS licenses <a href="https://www.jetbrains.com/?from=iris-admin" target="_blank"><img src="https://raw.githubusercontent.com/panjf2000/illustrations/master/jetbrains/jetbrains-variant-4.png" width="230" align="middle"/></a> ## ☕️ Buy me a coffee > Please be sure to leave your name, GitHub account or other social media accounts when you donate by the following means so that I can add it to the list of donors as a token of my appreciation. - [为爱发电](https://afdian.net/@snowlyg/plan) - [donating](https://paypal.me/snowlyg?country.x=C2&locale.x=zh_XC)
Package crypto provides a toolbox of advanced cryptographic primitives, for applications that need more than straightforward signing and encryption. The cornerstone of this toolbox is the 'abstract' sub-package, which defines abstract interfaces to cryptographic primitives designed to be independent of specific cryptographic algorithms, to facilitate upgrading applications to new cryptographic algorithms or switching to alternative algorithms for experimentation purposes. This toolkit's public-key crypto API includes an abstract.Group interface generically supporting a broad class of group-based public-key primitives including DSA-style integer residue groups and elliptic curve groups. Users of this API can thus write higher-level crypto algorithms such as zero-knowledge proofs without knowing or caring exactly what kind of group, let alone which precise security parameters or elliptic curves, are being used. The abstract group interface supports the standard algebraic operations on group elements and scalars that nontrivial public-key algorithms tend to rely on. The interface uses additive group terminology typical for elliptic curves, such that point addition is homomorphically equivalent to adding their (potentially secret) scalar multipliers. But the API and its operations apply equally well to DSA-style integer groups. The abstract.Suite interface builds further on the abstract.Group API to represent an abstraction of entire pluggable ciphersuites, which include a group (e.g., curve) suitable for advanced public-key crypto together with a suitably matched set of symmetric-key crypto algorithms. As a trivial example, generating a public/private keypair is as simple as: The first statement picks a private key (Scalar) from a specified source of cryptographic random or pseudo-random bits, while the second performs elliptic curve scalar multiplication of the curve's standard base point (indicated by the 'nil' argument to Mul) by the scalar private key 'a'. Similarly, computing a Diffie-Hellman shared secret using Alice's private key 'a' and Bob's public key 'B' can be done via: Note that we use 'Mul' rather than 'Exp' here because the library uses the additive-group terminology common for elliptic curve crypto, rather than the multiplicative-group terminology of traditional integer groups - but the two are semantically equivalent and the interface itself works for both elliptic curve and integer groups. See below for more complete examples. Various sub-packages provide several specific implementations of these abstract cryptographic interfaces. In particular, the 'nist' sub-package provides implementations of modular integer groups underlying conventional DSA-style algorithms, and of NIST-standardized elliptic curves built on the Go crypto library. The 'edwards' sub-package provides the abstract group interface using more recent Edwards curves, including the popular Ed25519 curve. The 'openssl' sub-package offers an alternative implementation of NIST-standardized elliptic curves and symmetric-key algorithms, built as wrappers around OpenSSL's crypto library. Other sub-packages build more interesting high-level cryptographic tools atop these abstract primitive interfaces, including: - poly: Polynomial commitment and verifiable Shamir secret splitting for implementing verifiable 't-of-n' threshold cryptographic schemes. This can be used to encrypt a message so that any 2 out of 3 receivers must work together to decrypt it, for example. - proof: An implementation of the general Camenisch/Stadler framework for discrete logarithm knowledge proofs. This system supports both interactive and non-interactive proofs of a wide variety of statements such as, "I know the secret x associated with public key X or I know the secret y associated with public key Y", without revealing anything about either secret or even which branch of the "or" clause is true. - anon: Anonymous and pseudonymous public-key encryption and signing, where the sender of a signed message or the receiver of an encrypted message is defined as an explicit anonymity set containing several public keys rather than just one. For example, a member of an organization's board of trustees might prove to be a member of the board without revealing which member she is. - shuffle: Verifiable cryptographic shuffles of ElGamal ciphertexts, which can be used to implement (for example) voting or auction schemes that keep the sources of individual votes or bids private without anyone having to trust the shuffler(s) to shuffle votes/bids honestly. For now this library should currently be considered experimental: it will definitely be changing in non-backward-compatible ways, and it will need independent security review before it should be considered ready for use in security-critical applications. However, we intend to bring the library closer to stability and real-world usability as quickly as development resources permit, and as interest and application demand dictates. As should be obvious, this library is intended the use of developers who are at least moderately knowledgeable about crypto. If you want a crypto library that makes it easy to implement "basic crypto" functionality correctly - i.e., plain public-key encryption and signing - then the NaCl/Sodium pursues this worthy goal (http://doc.libsodium.org). This toolkit's purpose is to make it possible - and preferably but not necessarily easy - to do slightly more interesting things that most current crypto libraries don't support effectively. The one existing crypto library that this toolkit is probably most comparable to is the Charm rapid prototyping library for Python (http://charm-crypto.com/). This library incorporates and/or builds on existing code from a variety of sources, as documented in the relevant sub-packages. This example illustrates how to use the crypto toolkit's abstract group API to perform basic Diffie-Hellman key exchange calculations, using the NIST-standard P256 elliptic curve in this case. Any other suitable elliptic curve or other cryptographic group may be used simply by changing the first line that picks the suite. This example illustrates how the crypto toolkit may be used to perform "pure" ElGamal encryption, in which the message to be encrypted is small enough to be embedded directly within a group element (e.g., in an elliptic curve point). For basic background on ElGamal encryption see for example http://en.wikipedia.org/wiki/ElGamal_encryption. Most public-key crypto libraries tend not to support embedding data in points, in part because for "vanilla" public-key encryption you don't need it: one would normally just generate an ephemeral Diffie-Hellman secret and use that to seed a symmetric-key crypto algorithm such as AES, which is much more efficient per bit and works for arbitrary-length messages. However, in many advanced public-key crypto algorithms it is often useful to be able to embedded data directly into points and compute with them: as just one of many examples, the proactively verifiable anonymous messaging scheme prototyped in Verdict (see http://dedis.cs.yale.edu/dissent/papers/verdict-abs). For fancier versions of ElGamal encryption implemented in this toolkit see for example anon.Encrypt, which encrypts a message for one of several possible receivers forming an explicit anonymity set.