Package autopprof provides a development-time library to collect pprof profiles from Go programs. This package is experimental and APIs may change.
Package stringprep provides data tables and algorithms for RFC-3454, including errata (as of 2018-02). It also provides a profile for SASLprep as defined in RFC-4013.
Package antlr implements the Go version of the ANTLR 4 runtime. ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files. It's widely used to build languages, tools, and frameworks. From a grammar, ANTLR generates a parser that can build parse trees and also generates a listener interface (or visitor) that makes it easy to respond to the recognition of phrases of interest. ANTLR supports the generation of code in a number of target languages, and the generated code is supported by a runtime library, written specifically to support the generated code in the target language. This library is the runtime for the Go target. To generate code for the go target, it is generally recommended to place the source grammar files in a package of their own, and use the `.sh` script method of generating code, using the go generate directive. In that same directory it is usual, though not required, to place the antlr tool that should be used to generate the code. That does mean that the antlr tool JAR file will be checked in to your source code control though, so you are free to use any other way of specifying the version of the ANTLR tool to use, such as aliasing in `.zshrc` or equivalent, or a profile in your IDE, or configuration in your CI system. Here is a general template for an ANTLR based recognizer in Go: Make sure that the package statement in your grammar file(s) reflects the go package they exist in. The generate.go file then looks like this: And the generate.sh file will look similar to this: depending on whether you want visitors or listeners or any other ANTLR options. From the command line at the root of your package “myproject” you can then simply issue the command: Copyright (c) 2012-2022 The ANTLR Project. All rights reserved. Use of this file is governed by the BSD 3-clause license, which can be found in the LICENSE.txt file in the project root.
Cover is a program for analyzing the coverage profiles generated by 'go test -coverprofile=cover.out'. Cover is also used by 'go test -cover' to rewrite the source code with annotations to track which parts of each function are executed. It operates on one Go source file at a time, computing approximate basic block information by studying the source. It is thus more portable than binary-rewriting coverage tools, but also a little less capable. For instance, it does not probe inside && and || expressions, and can be mildly confused by single statements with multiple function literals. For usage information, please see: No longer maintained: For Go releases 1.5 and later, this tool lives in the standard repository. The code here is not maintained.
Package ci is for continuous integration testing
Shakesapp is a web application which starts up a server that can be queried to determine how many times a string appears in the works of Shakespeare and then sends requests to that server.
Package profiler is a client for the Stackdriver Profiler service. This package is still experimental and subject to change. Usage example: Calling Start will start a goroutine to collect profiles and upload to the profiler server, at the rhythm specified by the server. The caller must provide the service string in the config, and may provide other information as well. See Config for details. Profiler has CPU, heap and goroutine profiling enabled by default. Mutex profiling can be enabled in the config. Note that goroutine and mutex profiles are shown as "threads" and "contention" profiles in the profiler UI.
Package chromedp is a high level Chrome DevTools Protocol client that simplifies driving browsers for scraping, unit testing, or profiling web pages using the CDP. chromedp requires no third-party dependencies, implementing the async Chrome DevTools Protocol entirely in Go. This package includes a number of simple examples. Additionally, chromedp/examples contains more complex examples.
Package applicationcostprofiler provides the API client, operations, and parameter types for AWS Application Cost Profiler. This reference provides descriptions of the AWS Application Cost Profiler API. The AWS Application Cost Profiler API provides programmatic access to view, create, update, and delete application cost report definitions, as well as to import your usage data into the Application Cost Profiler service. For more information about using this service, see the AWS Application Cost Profiler User Guide.
Package customerprofiles provides the API client, operations, and parameter types for Amazon Connect Customer Profiles. Amazon Connect Customer Profiles is a unified customer profile for your contact center that has pre-built connectors powered by AppFlow that make it easy to combine customer information from third party applications, such as Salesforce (CRM), ServiceNow (ITSM), and your enterprise resource planning (ERP), with contact history from your Amazon Connect contact center. For more information about the Amazon Connect Customer Profiles feature, see Use Customer Profiles in the Amazon Connect Administrator's Guide.
Package iotwireless provides the API client, operations, and parameter types for AWS IoT Wireless. AWS IoT Wireless provides bi-directional communication between internet-connected wireless devices and the AWS Cloud. To onboard both LoRaWAN and Sidewalk devices to AWS IoT, use the IoT Wireless API. These wireless devices use the Low Power Wide Area Networking (LPWAN) communication protocol to communicate with AWS IoT. Using the API, you can perform create, read, update, and delete operations for your wireless devices, gateways, destinations, and profiles. After onboarding your devices, you can use the API operations to set log levels and monitor your devices with CloudWatch. You can also use the API operations to create multicast groups and schedule a multicast session for sending a downlink message to devices in the group. By using Firmware Updates Over-The-Air (FUOTA) API operations, you can create a FUOTA task and schedule a session to update the firmware of individual devices or an entire group of devices in a multicast group. To connect to the AWS IoT Wireless Service, use the Service endpoints as described in IoT Wireless Service endpointsin the AWS General Reference.
Package codeguruprofiler provides the API client, operations, and parameter types for Amazon CodeGuru Profiler. operations. Amazon CodeGuru Profiler collects runtime performance data from your live applications, and provides recommendations that can help you fine-tune your application performance. Using machine learning algorithms, CodeGuru Profiler can help you find your most expensive lines of code and suggest ways you can improve efficiency and remove CPU bottlenecks. Amazon CodeGuru Profiler provides different visualizations of profiling data to help you identify what code is running on the CPU, see how much time is consumed, and suggest ways to reduce CPU utilization. Amazon CodeGuru Profiler currently supports applications written in all Java virtual machine (JVM) languages and Python. While CodeGuru Profiler supports both visualizations and recommendations for applications written in Java, it can also generate visualizations and a subset of recommendations for applications written in other JVM languages and Python. For more information, see What is Amazon CodeGuru Profiler in the Amazon CodeGuru Profiler User Guide.
Package cgosymbolizer teaches the Go runtime to include cgo frames in backtraces. To use the package, import it for its side effects: cgosymbolizer only supports Linux and macOS. Importing it on another operating system will have no effect. Support is further limited by Go's implementation of runtime.SetCgoTraceback. On at least linux/amd64 and linux/ppc64le, Go can collect a C traceback, with cgosymbolizer's help, if the C code receives a signal. This permits visibility into C code in CPU profiles and fatal signals. Otherwise cgosymbolizer can only collect a C stack trace when a C function calls a Go function. For details, follow https://github.com/golang/go/issues/24518. Note that the Linux implementation is provided by github.com/ianlancetaylor/cgosymbolizer. The macOS implementation is original work.
Package at is a framework for communication with AT-compatible devices like Huawei modems via serial port. Currently this package is well-suited for Huawei devices and since AT-commands set may vary from device to device, sometimes you'll be forced to implement some logic by yourself. This framework includes facilities for device monitoring, sending and receiving AT-commands, encoding and decoding SMS messages from or to PDU octet representation (as specified in 3GPP TS 23.040). An example of incoming SMS monitor application is given. In order to introduce your own logic (i.e. custom modem Init function), you should derive your profile from the default DeviceProfile and override its methods. Project page: https://github.com/xlab/at
Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Version 0.4.0 introduces a few breaking changes to the _samlsp_ package in order to make the package more extensible, and to clean up the interfaces a bit. The default behavior remains the same, but you can now provide interface implementations of _RequestTracker_ (which tracks pending requests), _Session_ (which handles maintaining a session) and _OnError_ which handles reporting errors. Public fields of _samlsp.Middleware_ have changed, so some usages may require adjustment. See [issue 231](https://github.com/crewjam/saml/issues/231) for details. The option to provide an IDP metadata URL has been deprecated. Instead, we recommend that you use the `FetchMetadata()` function, or fetch the metadata yourself and use the new `ParseMetadata()` function, and pass the metadata in _samlsp.Options.IDPMetadata_. Similarly, the _HTTPClient_ field is now deprecated because it was only used for fetching metdata, which is no longer directly implemented. The fields that manage how cookies are set are deprecated as well. To customize how cookies are managed, provide custom implementation of _RequestTracker_ and/or _Session_, perhaps by extending the default implementations. The deprecated fields have not been removed from the Options structure, but will be in future. In particular we have deprecated the following fields in _samlsp.Options_: - `Logger` - This was used to emit errors while validating, which is an anti-pattern. - `IDPMetadataURL` - Instead use `FetchMetadata()` - `HTTPClient` - Instead pass httpClient to FetchMetadata - `CookieMaxAge` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieName` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider Let us assume we have a simple web application to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import ( ) ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [samltest.id](https://samltest.id/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identity provider to establish trust from the service provider to the IDP. For [samltest.id](https://samltest.id/), you can do something like: Navigate to https://samltest.id/upload.php and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://samltest.id/idp/profile/SAML2/Redirect/SSO` 1. samltest.id prompts you for a username and password. 1. samltest.id returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `example/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package can produce signed SAML assertions, and can validate both signed and encrypted SAML assertions. It does not support signed or encrypted requests. The _RelayState_ parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originally requested link, rather than the root. Unfortunately, _RelayState_ is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [SAMLtest](https://samltest.id/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `78B6038B3B9DFB88`](https://keybase.io/crewjam)).
Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Version 0.4.0 introduces a few breaking changes to the _samlsp_ package in order to make the package more extensible, and to clean up the interfaces a bit. The default behavior remains the same, but you can now provide interface implementations of _RequestTracker_ (which tracks pending requests), _Session_ (which handles maintaining a session) and _OnError_ which handles reporting errors. Public fields of _samlsp.Middleware_ have changed, so some usages may require adjustment. See [issue 231](https://github.com/crewjam/saml/issues/231) for details. The option to provide an IDP metadata URL has been deprecated. Instead, we recommend that you use the `FetchMetadata()` function, or fetch the metadata yourself and use the new `ParseMetadata()` function, and pass the metadata in _samlsp.Options.IDPMetadata_. Similarly, the _HTTPClient_ field is now deprecated because it was only used for fetching metdata, which is no longer directly implemented. The fields that manage how cookies are set are deprecated as well. To customize how cookies are managed, provide custom implementation of _RequestTracker_ and/or _Session_, perhaps by extending the default implementations. The deprecated fields have not been removed from the Options structure, but will be in future. In particular we have deprecated the following fields in _samlsp.Options_: - `Logger` - This was used to emit errors while validating, which is an anti-pattern. - `IDPMetadataURL` - Instead use `FetchMetadata()` - `HTTPClient` - Instead pass httpClient to FetchMetadata - `CookieMaxAge` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieName` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider Let us assume we have a simple web application to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import ( ) ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [samltest.id](https://samltest.id/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identity provider to establish trust from the service provider to the IDP. For [samltest.id](https://samltest.id/), you can do something like: Navigate to https://samltest.id/upload.php and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://samltest.id/idp/profile/SAML2/Redirect/SSO` 1. samltest.id prompts you for a username and password. 1. samltest.id returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `example/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package can produce signed SAML assertions, and can validate both signed and encrypted SAML assertions. It does not support signed or encrypted requests. The _RelayState_ parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originally requested link, rather than the root. Unfortunately, _RelayState_ is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [SAMLtest](https://samltest.id/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `78B6038B3B9DFB88`](https://keybase.io/crewjam)).
maintserve is a program that serves Go issues over HTTP, so they can be viewed in a browser. It uses x/build/maintner/godata as its backing source of data. It statically embeds all the resources it uses, so it's possible to use it when offline. During that time, the corpus will not be able to update, and GitHub user profile pictures won't load.