Package datastore provides a client for Google Cloud Datastore. See https://godoc.org/cloud.google.com/go for authentication, timeouts, connection pooling and similar aspects of this package. Entities are the unit of storage and are associated with a key. A key consists of an optional parent key, a string application ID, a string kind (also known as an entity type), and either a StringID or an IntID. A StringID is also known as an entity name or key name. It is valid to create a key with a zero StringID and a zero IntID; this is called an incomplete key, and does not refer to any saved entity. Putting an entity into the datastore under an incomplete key will cause a unique key to be generated for that entity, with a non-zero IntID. An entity's contents are a mapping from case-sensitive field names to values. Valid value types are: Slices of structs are valid, as are structs that contain slices. The Get and Put functions load and save an entity's contents. An entity's contents are typically represented by a struct pointer. Example code: GetMulti, PutMulti and DeleteMulti are batch versions of the Get, Put and Delete functions. They take a []*Key instead of a *Key, and may return a datastore.MultiError when encountering partial failure. Mutate generalizes PutMulti and DeleteMulti to a sequence of any Datastore mutations. It takes a series of mutations created with NewInsert, NewUpdate, NewUpsert and NewDelete and applies them atomically. An entity's contents can be represented by a variety of types. These are typically struct pointers, but can also be any type that implements the PropertyLoadSaver interface. If using a struct pointer, you do not have to explicitly implement the PropertyLoadSaver interface; the datastore will automatically convert via reflection. If a struct pointer does implement PropertyLoadSaver then those methods will be used in preference to the default behavior for struct pointers. Struct pointers are more strongly typed and are easier to use; PropertyLoadSavers are more flexible. The actual types passed do not have to match between Get and Put calls or even across different calls to datastore. It is valid to put a *PropertyList and get that same entity as a *myStruct, or put a *myStruct0 and get a *myStruct1. Conceptually, any entity is saved as a sequence of properties, and is loaded into the destination value on a property-by-property basis. When loading into a struct pointer, an entity that cannot be completely represented (such as a missing field) will result in an ErrFieldMismatch error but it is up to the caller whether this error is fatal, recoverable or ignorable. By default, for struct pointers, all properties are potentially indexed, and the property name is the same as the field name (and hence must start with an upper case letter). Fields may have a `datastore:"name,options"` tag. The tag name is the property name, which must be one or more valid Go identifiers joined by ".", but may start with a lower case letter. An empty tag name means to just use the field name. A "-" tag name means that the datastore will ignore that field. The only valid options are "omitempty", "noindex" and "flatten". If the options include "omitempty" and the value of the field is a zero value, then the field will be omitted on Save. Zero values are best defined in the golang spec (https://golang.org/ref/spec#The_zero_value). Struct field values will never be empty, except for nil pointers. If options include "noindex" then the field will not be indexed. All fields are indexed by default. Strings or byte slices longer than 1500 bytes cannot be indexed; fields used to store long strings and byte slices must be tagged with "noindex" or they will cause Put operations to fail. For a nested struct field, the options may also include "flatten". This indicates that the immediate fields and any nested substruct fields of the nested struct should be flattened. See below for examples. To use multiple options together, separate them by a comma. The order does not matter. If the options is "" then the comma may be omitted. Example code: A field of slice type corresponds to a Datastore array property, except for []byte, which corresponds to a Datastore blob. Zero-length slice fields are not saved. Slice fields of length 1 or greater are saved as Datastore arrays. When a zero-length Datastore array is loaded into a slice field, the slice field remains unchanged. If a non-array value is loaded into a slice field, the result will be a slice with one element, containing the value. Loading a Datastore Null into a basic type (int, float, etc.) results in a zero value. Loading a Null into a slice of basic type results in a slice of size 1 containing the zero value. Loading a Null into a pointer field results in nil. Loading a Null into a field of struct type is an error. A struct field can be a pointer to a signed integer, floating-point number, string or bool. Putting a non-nil pointer will store its dereferenced value. Putting a nil pointer will store a Datastore Null property, unless the field is marked omitempty, in which case no property will be stored. Loading a Null into a pointer field sets the pointer to nil. Loading any other value allocates new storage with the value, and sets the field to point to it. If the struct contains a *datastore.Key field tagged with the name "__key__", its value will be ignored on Put. When reading the Entity back into the Go struct, the field will be populated with the *datastore.Key value used to query for the Entity. Example code: If the struct pointed to contains other structs, then the nested or embedded structs are themselves saved as Entity values. For example, given these definitions: then an Outer would have one property, Inner, encoded as an Entity value. If an outer struct is tagged "noindex" then all of its implicit flattened fields are effectively "noindex". If the Inner struct contains a *Key field with the name "__key__", like so: then the value of K will be used as the Key for Inner, represented as an Entity value in datastore. If any nested struct fields should be flattened, instead of encoded as Entity values, the nested struct field should be tagged with the "flatten" option. For example, given the following: an Outer's properties would be equivalent to those of: Note that the "flatten" option cannot be used for Entity value fields. The server will reject any dotted field names for an Entity value. An entity's contents can also be represented by any type that implements the PropertyLoadSaver interface. This type may be a struct pointer, but it does not have to be. The datastore package will call Load when getting the entity's contents, and Save when putting the entity's contents. Possible uses include deriving non-stored fields, verifying fields, or indexing a field only if its value is positive. Example code: The *PropertyList type implements PropertyLoadSaver, and can therefore hold an arbitrary entity's contents. If a type implements the PropertyLoadSaver interface, it may also want to implement the KeyLoader interface. The KeyLoader interface exists to allow implementations of PropertyLoadSaver to also load an Entity's Key into the Go type. This type may be a struct pointer, but it does not have to be. The datastore package will call LoadKey when getting the entity's contents, after calling Load. Example code: To load a Key into a struct which does not implement the PropertyLoadSaver interface, see the "Key Field" section above. Queries retrieve entities based on their properties or key's ancestry. Running a query yields an iterator of results: either keys or (key, entity) pairs. Queries are re-usable and it is safe to call Query.Run from concurrent goroutines. Iterators are not safe for concurrent use. Queries are immutable, and are either created by calling NewQuery, or derived from an existing query by calling a method like Filter or Order that returns a new query value. A query is typically constructed by calling NewQuery followed by a chain of zero or more such methods. These methods are: Example code: Client.RunInTransaction runs a function in a transaction. Example code: Pass the ReadOnly option to RunInTransaction if your transaction is used only for Get, GetMulti or queries. Read-only transactions are more efficient. This package supports the Cloud Datastore emulator, which is useful for testing and development. Environment variables are used to indicate that datastore traffic should be directed to the emulator instead of the production Datastore service. To install and set up the emulator and its environment variables, see the documentation at https://cloud.google.com/datastore/docs/tools/datastore-emulator.
Package pcre provides access to the Perl Compatible Regular Expresion library, PCRE. It implements two main types, Regexp and Matcher. Regexp objects store a compiled regular expression. They consist of two immutable parts: pcre and pcre_extra. Compile()/MustCompile() initialize pcre. Calling Study() on a compiled Regexp initializes pcre_extra. Compilation of regular expressions using Compile or MustCompile is slightly expensive, so these objects should be kept and reused, instead of compiling them from scratch for each matching attempt. CompileJIT and MustCompileJIT are way more expensive, because they run Study() after compiling a Regexp, but they tend to give much better perfomance: http://sljit.sourceforge.net/regex_perf.html Matcher objects keeps the results of a match against a []byte or string subject. The Group and GroupString functions provide access to capture groups; both versions work no matter if the subject was a []byte or string, but the version with the matching type is slightly more efficient. Matcher objects contain some temporary space and refer the original subject. They are mutable and can be reused (using Match, MatchString, Reset or ResetString). For details on the regular expression language implemented by this package and the flags defined below, see the PCRE documentation. http://www.pcre.org/pcre.txt
Package errcode facilitates standardized API error codes. The goal is that clients can reliably understand errors by checking against immutable error codes This godoc documents usage. For broader context, see https://github.com/pingcap/errcode/tree/master/README.md Error codes are represented as strings by CodeStr (see CodeStr documentation). This package is designed to have few opinions and be a starting point for how you want to do errors in your project. The main requirement is to satisfy the ErrorCode interface by attaching a Code to an Error. See the documentation of ErrorCode. Additional optional interfaces HasClientData, HasOperation, Causer, and StackTracer are provided for extensibility in creating structured error data representations. Hierarchies are supported: a Code can point to a parent. This is used in the HTTPCode implementation to inherit HTTP codes found with MetaDataFromAncestors. The hierarchy is present in the Code's string representation with a dot separation. A few generic top-level error codes are provided (see the variables section of the doc). You are encouraged to create your own error codes customized to your application rather than solely using generic errors. See NewJSONFormat for an opinion on how to send back meta data about errors with the error data to a client. JSONFormat includes a body of response data (the "data field") that is by default the data from the Error serialized to JSON. Stack traces are automatically added by NewInternalErr and show up as the Stack field in JSONFormat. Errors can be grouped with Combine() and ungrouped via Errors() which show up as the Others field in JSONFormat. To extract any ErrorCodes from an error, use CodeChain(). This extracts error codes without information loss (using ChainContext).
Package radixtree implements an Adaptive Radix Tree, aka compressed trie or compact prefix tree. It is adaptive in the sense that nodes are not constant size, having as few or many children as needed to branch to all subtrees. This package implements a radix-256 tree where each key symbol (radix) is a byte, allowing up to 256 possible branches to traverse to the next node. The implementation is optimized for read performance and allocates zero bytes of heap memory for read oprations. Once the radix tree is built, it can be repeatedly searched quickly. Concurrent searches are safe since these do not modify the radixtree. Access is not synchronized (not concurrent safe with writes), allowing the caller to synchronize, if needed, in whatever manner works best for the application. The API uses string keys, since strings are immutable and therefore it is not necessary make a copy of the key provided to the radix tree.
Package builder provides a method for writing fluent immutable builders.
This package is the root package of the govmomi library. The library is structured as follows: The minimal usable functionality is available through the vim25 package. It contains subpackages that contain generated types, managed objects, and all available methods. The vim25 package is entirely independent of the other packages in the govmomi tree -- it has no dependencies on its peers. The vim25 package itself contains a client structure that is passed around throughout the entire library. It abstracts a session and its immutable state. See the vim25 package for more information. The session package contains an abstraction for the session manager that allows a user to login and logout. It also provides access to the current session (i.e. to determine if the user is in fact logged in) The object package contains wrappers for a selection of managed objects. The constructors of these objects all take a *vim25.Client, which they pass along to derived objects, if applicable. The govc package contains the govc CLI. The code in this tree is not intended to be used as a library. Any functionality that govc contains that _could_ be used as a library function but isn't, _should_ live in a root level package. Other packages, such as "event", "guest", or "license", provide wrappers for the respective subsystems. They are typically not needed in normal workflows so are kept outside the object package.
Package CDF provides facilities to read and write files in NetCDF 'classic' (V1 or V2) format. The HDF based NetCDF-4 format is not supported. The data model and the classic file format are documented at A NetCDF file contains an immutable header (this library does not support modifying it) that defines the layout of the data section and contains metadata. The data can be read, written and, if there exists a record dimension, appended to. To create a new file, first create a header, e.g.: To use an existing file: The Header field of f is now usable for inspection of dimensions, variables and attributes, but should not be modified (obvious ways of doing this will cause panics). To read data from the file, use And similar for writing.
This package provides immutable UUID structs and the functions NewV3, NewV4, NewV5 and Parse() for generating versions 3, 4 and 5 UUIDs as specified in RFC 4122. Copyright (C) 2011 by Krzysztof Kowalik <chris@nu7hat.ch>
Package iavl implements a versioned, snapshottable (immutable) AVL+ tree for persisting key-value pairs. Basic usage of MutableTree. Proof of existence: Proof of absence: Now we delete an old version: Can't create a proof of absence for a version we no longer have:
Package gateway provides a drop-in replacement for net/http.ListenAndServe for use in AWS Lambda & API Gateway.