Package httprouter is a trie based high performance HTTP request router. A trivial example is: The router matches incoming requests by the request method and the path. If a handle is registered for this path and method, the router delegates the request to that function. For the methods GET, POST, PUT, PATCH and DELETE shortcut functions exist to register handles, for all other methods router.Handle can be used. The registered path, against which the router matches incoming requests, can contain two types of parameters: Named parameters are dynamic path segments. They match anything until the next '/' or the path end: Catch-all parameters match anything until the path end, including the directory index (the '/' before the catch-all). Since they match anything until the end, catch-all parameters must always be the final path element. The value of parameters is saved as a slice of the Param struct, consisting each of a key and a value. The slice is passed to the Handle func as a third parameter. There are two ways to retrieve the value of a parameter:
Package amt provides a reference implementation of the IPLD AMT (Array Mapped Trie) used in the Filecoin blockchain. The AMT algorithm is similar to a HAMT https://en.wikipedia.org/wiki/Hash_array_mapped_trie but instead presents an array-like interface where the indexes themselves form the mapping to nodes in the trie structure. An AMT is suitable for storing sparse array data as a minimum amount of intermediate nodes are required to address a small number of entries even when their indexes span a large distance. AMT is also a suitable means of storing non-sparse array data as required, with a small amount of storage and algorithmic overhead required to handle mapping that assumes that some elements within any range of data may not be present. The AMT algorithm produces a tree-like graph, with a single root node addressing a collection of child nodes which connect downward toward leaf nodes which store the actual entries. No terminal entries are stored in intermediate elements of the tree, unlike in a HAMT. We can divide up the AMT tree structure into "levels" or "heights", where a height of zero contains the terminal elements, and the maximum height of the tree contains the single root node. Intermediate nodes are used to span across the range of indexes. Any AMT instance uses a fixed "width" that is consistent across the tree's nodes. An AMT's "bitWidth" dictates the width, or maximum-brancing factor (arity) of the AMT's nodes by determining how many bits of the original index are used to determine the index at any given level. A bitWidth of 3 (the default for this implementation) can generate indexes in the range of 0 to (3^2)-1=7, i.e. a "width" of 8. In practice, this means that an AMT with a bitWidth of 3 has a branching factor of _between 1 and 8_ for any node in the structure. Considering the minimal case: a minimal AMT contains a single node which serves as both the root and the leaf node and can hold zero or more elements (an empty AMT is possible, although a special-case, and consists of a zero-length root). This minimal AMT can store array indexes from 0 to width-1 (8 for the default bitWidth of 3) without requiring the addition of additional nodes. Attempts to add additional indexes beyond width-1 will result in additional nodes being added and a tree structure in order to address the new elements. The minimal AMT node is said to have a height of 0. Every node in an AMT has a height that indicates its distance from the leaf nodes. All leaf nodes have a height of 0. The height of the root node dictates the overall height of the entire AMT. In the case of the minimal AMT, this is 0. Elements are stored in a compacted form within nodes, they are "position-mapped" by a bitmap field that is stored with the node. The bitmap is a simple byte array, where each bit represents an element of the data that can be stored in the node. With a width of 8, the bitmap is a single byte and up to 8 elements can be stored in the node. The data array of a node _only stores elements that are present in that node_, so the array is commonly shorter than the maximum width. An empty AMT is a special-case where the single node can have zero elements, therefore a zero-length data array and a bitmap of `0x00`. In all other cases, the data array must have between 1 and width elements. Determining the position of an index within the data array requires counting the number of set bits within the bitmap up to the element we are concerned with. If the bitmap has bits 2, 4 and 6 set, we can see that only 3 of the bits are set so our data array should hold 3 elements. To address index 4, we know that the first element will be index 2 and therefore the second will hold index 4. This format allows us to store only the elements that are set in the node. Overflow beyond the single node AMT by adding an index beyond width-1 requires an increase in height in order to address all elements. If an element in the range of width to (width*2)-1 is added, a single additional height is required which will result in a new root node which is used to address two consecutive leaf nodes. Because we have an arity of up to width at any node, the addition of indexes in the range of 0 to (width^2)-1 will still require only the addition of a single additional height above the leaf nodes, i.e. height 1. From the width of an AMT we can derive the maximum range of indexes that can be contained by an AMT at any given `height` with the formula width^(height+1)-1. e.g. an AMT with a width of 8 and a height of 2 can address indexes 0 to 8^(2+1)-1=511. Incrementing the height doubles the range of indexes that can be contained within that structure. Nodes above height 0 (non-leaf nodes) do not contain terminal elements, but instead, their data array contains links to child nodes. The index compaction using the bitmap is the same as for leaf nodes, so each non-leaf node only stores as many links as it has child nodes. Because additional height is required to address larger indexes, even a single-element AMT will require more than one node where the index is greater than the width of the AMT. For a width of 8, indexes 8 to 63 require a height of 1, indexes 64 to 511 require a height of 2, indexes 512 to 4095 require a height of 3, etc. Retrieving elements from the AMT requires extracting only the portion of the requested index that is required at each height to determine the position in the data array to navigate into. When traversing through the tree, we only need to select from indexes 0 to width-1. To do this, we take log2(width) bits from the index to form a number that is between 0 and width-1. e.g. for a width of 8, we only need 3 bits to form a number between 0 and 7, so we only consume 3 bits per level of the AMT as we traverse. A simple method to calculate this at any height in the AMT (assuming bitWidth of 3, i.e. a width of 8) is: 1. Calculate the maximum number of nodes (not entries) that may be present in an sub-tree rooted at the current height. width^height provides this number. e.g. at height 0, only 1 node can be present, but at height 3, we may have a tree of up to 512 nodes (storing up to 8^(3+1)=4096 entries). 2. Divide the index by this number to find the index for this height. e.g. an index of 3 at height 0 will be 3/1=3, or an index of 20 at height 1 will be 20/8=2. 3. If we are at height 0, the element we want is at the data index, position-mapped via the bitmap. 4. If we are above height 0, we need to navigate to the child element at the index we calculated, position-mapped via the bitmap. When traversing to the child, we discard the upper portion of the index that we no longer need. This can be achieved by a mod operation against the number-of-nodes value. e.g. an index of 20 at height 1 requires navigation to the element at position 2, when moving to that element (which is height 0), we truncate the index with 20%8=4, at height 0 this index will be the index in our data array (position-mapped via the bitmap). In this way, each sub-tree root consumes a small slice, log2(width) bits long, of the original index. Adding new elements to an AMT may require up to 3 steps: 1. Increasing the height to accommodate a new index if the current height is not sufficient to address the new index. Increasing the height requires turning the current root node into an intermediate and adding a new root which links to the old (repeated until the required height is reached). 2. Adding any missing intermediate and leaf nodes that are required to address the new index. Depending on the density of existing indexes, this may require the addition of up to height-1 new nodes to connect the root to the required leaf. Sparse indexes will mean large gaps in the tree that will need filling to address new, equally sparse, indexes. 3. Setting the element at the leaf node in the appropriate position in the data array and setting the appropriate bit in the bitmap. Removing elements requires a reversal of this process. Any empty node (other than the case of a completely empty AMT) must be removed and its parent should have its child link removed. This removal may recurse up the tree to remove many unnecessary intermediate nodes. The root node may also be removed if the current height is no longer necessary to contain the range of indexes still in the AMT. This can be easily determined if _only_ the first bit of the root's bitmap is set, meaning only the left-most is present, which will become the new root node (repeated until the new root has more than the first bit set or height of 0, the single-node case). See https://github.com/ipld/specs/blob/master/data-structures/hashmap.md for a description of a HAMT algorithm. And https://github.com/ipld/specs/blob/master/data-structures/vector.md for a description of a similar algorithm to an AMT that doesn't support internal node compression and therefore doesn't support sparse arrays. Unlike a HAMT, the AMT algorithm doesn't benefit from randomness introduced by a hash algorithm. Therefore an AMT used in cases where user-input can influence indexes, larger-than-necessary tree structures may present risks as well as the challenge imposed by having a strict upper-limit on the indexes addressable by the AMT. A width of 8, using 64-bit integers for indexing, allows for a tree height of up to 64/log2(8)=21 (i.e. a width of 8 has a bitWidth of 3, dividing the 64 bits of the uint into 21 separate per-height indexes). Careful placement of indexes could create extremely sub-optimal forms with large heights connecting leaf nodes that are sparsely packed. The overhead of the large number of intermediate nodes required to connect leaf nodes in AMTs that contain high indexes can be abused to create perverse forms that contain large numbers of nodes to store a minimal number of elements. Minimal nodes will be created where indexes are all in the lower-range. The optimal case for an AMT is contiguous index values starting from zero. As larger indexes are introduced that span beyond the current maximum, more nodes are required to address the new nodes _and_ the existing lower index nodes. Consider a case where a width=8 AMT is only addressing indexes less than 8 and requiring a single height. The introduction of a single index within 8 of the maximum 64-bit unsigned integer range will require the new root to have a height of 21 and have enough connecting nodes between it and both the existing elements and the new upper index. This pattern of behavior may be acceptable if there is significant density of entries under a particular maximum index. There is a direct relationship between the sparseness of index values and the number of nodes required to address the entries. This should be the key consideration when determining whether an AMT is a suitable data-structure for a given application.
Package amt provides a reference implementation of the IPLD AMT (Array Mapped Trie) used in the Filecoin blockchain. The AMT algorithm is similar to a HAMT https://en.wikipedia.org/wiki/Hash_array_mapped_trie but instead presents an array-like interface where the indexes themselves form the mapping to nodes in the trie structure. An AMT is suitable for storing sparse array data as a minimum amount of intermediate nodes are required to address a small number of entries even when their indexes span a large distance. AMT is also a suitable means of storing non-sparse array data as required, with a small amount of storage and algorithmic overhead required to handle mapping that assumes that some elements within any range of data may not be present. The AMT algorithm produces a tree-like graph, with a single root node addressing a collection of child nodes which connect downward toward leaf nodes which store the actual entries. No terminal entries are stored in intermediate elements of the tree, unlike in a HAMT. We can divide up the AMT tree structure into "levels" or "heights", where a height of zero contains the terminal elements, and the maximum height of the tree contains the single root node. Intermediate nodes are used to span across the range of indexes. Any AMT instance uses a fixed "width" that is consistent across the tree's nodes. An AMT's "bitWidth" dictates the width, or maximum-brancing factor (arity) of the AMT's nodes by determining how many bits of the original index are used to determine the index at any given level. A bitWidth of 3 (the default for this implementation) can generate indexes in the range of 0 to (2^3)-1=7, i.e. a "width" of 8. In practice, this means that an AMT with a bitWidth of 3 has a branching factor of _between 1 and 8_ for any node in the structure. Considering the minimal case: a minimal AMT contains a single node which serves as both the root and the leaf node and can hold zero or more elements (an empty AMT is possible, although a special-case, and consists of a zero-length root). This minimal AMT can store array indexes from 0 to width-1 (8 for the default bitWidth of 3) without requiring the addition of additional nodes. Attempts to add additional indexes beyond width-1 will result in additional nodes being added and a tree structure in order to address the new elements. The minimal AMT node is said to have a height of 0. Every node in an AMT has a height that indicates its distance from the leaf nodes. All leaf nodes have a height of 0. The height of the root node dictates the overall height of the entire AMT. In the case of the minimal AMT, this is 0. Elements are stored in a compacted form within nodes, they are "position-mapped" by a bitmap field that is stored with the node. The bitmap is a simple byte array, where each bit represents an element of the data that can be stored in the node. With a width of 8, the bitmap is a single byte and up to 8 elements can be stored in the node. The data array of a node _only stores elements that are present in that node_, so the array is commonly shorter than the maximum width. An empty AMT is a special-case where the single node can have zero elements, therefore a zero-length data array and a bitmap of `0x00`. In all other cases, the data array must have between 1 and width elements. Determining the position of an index within the data array requires counting the number of set bits within the bitmap up to the element we are concerned with. If the bitmap has bits 2, 4 and 6 set, we can see that only 3 of the bits are set so our data array should hold 3 elements. To address index 4, we know that the first element will be index 2 and therefore the second will hold index 4. This format allows us to store only the elements that are set in the node. Overflow beyond the single node AMT by adding an index beyond width-1 requires an increase in height in order to address all elements. If an element in the range of width to (width*2)-1 is added, a single additional height is required which will result in a new root node which is used to address two consecutive leaf nodes. Because we have an arity of up to width at any node, the addition of indexes in the range of 0 to (width^2)-1 will still require only the addition of a single additional height above the leaf nodes, i.e. height 1. From the width of an AMT we can derive the maximum range of indexes that can be contained by an AMT at any given `height` with the formula width^(height+1)-1. e.g. an AMT with a width of 8 and a height of 2 can address indexes 0 to 8^(2+1)-1=511. Incrementing the height doubles the range of indexes that can be contained within that structure. Nodes above height 0 (non-leaf nodes) do not contain terminal elements, but instead, their data array contains links to child nodes. The index compaction using the bitmap is the same as for leaf nodes, so each non-leaf node only stores as many links as it has child nodes. Because additional height is required to address larger indexes, even a single-element AMT will require more than one node where the index is greater than the width of the AMT. For a width of 8, indexes 8 to 63 require a height of 1, indexes 64 to 511 require a height of 2, indexes 512 to 4095 require a height of 3, etc. Retrieving elements from the AMT requires extracting only the portion of the requested index that is required at each height to determine the position in the data array to navigate into. When traversing through the tree, we only need to select from indexes 0 to width-1. To do this, we take log2(width) bits from the index to form a number that is between 0 and width-1. e.g. for a width of 8, we only need 3 bits to form a number between 0 and 7, so we only consume 3 bits per level of the AMT as we traverse. A simple method to calculate this at any height in the AMT (assuming bitWidth of 3, i.e. a width of 8) is: 1. Calculate the maximum number of nodes (not entries) that may be present in an sub-tree rooted at the current height. width^height provides this number. e.g. at height 0, only 1 node can be present, but at height 3, we may have a tree of up to 512 nodes (storing up to 8^(3+1)=4096 entries). 2. Divide the index by this number to find the index for this height. e.g. an index of 3 at height 0 will be 3/1=3, or an index of 20 at height 1 will be 20/8=2. 3. If we are at height 0, the element we want is at the data index, position-mapped via the bitmap. 4. If we are above height 0, we need to navigate to the child element at the index we calculated, position-mapped via the bitmap. When traversing to the child, we discard the upper portion of the index that we no longer need. This can be achieved by a mod operation against the number-of-nodes value. e.g. an index of 20 at height 1 requires navigation to the element at position 2, when moving to that element (which is height 0), we truncate the index with 20%8=4, at height 0 this index will be the index in our data array (position-mapped via the bitmap). In this way, each sub-tree root consumes a small slice, log2(width) bits long, of the original index. Adding new elements to an AMT may require up to 3 steps: 1. Increasing the height to accommodate a new index if the current height is not sufficient to address the new index. Increasing the height requires turning the current root node into an intermediate and adding a new root which links to the old (repeated until the required height is reached). 2. Adding any missing intermediate and leaf nodes that are required to address the new index. Depending on the density of existing indexes, this may require the addition of up to height-1 new nodes to connect the root to the required leaf. Sparse indexes will mean large gaps in the tree that will need filling to address new, equally sparse, indexes. 3. Setting the element at the leaf node in the appropriate position in the data array and setting the appropriate bit in the bitmap. Removing elements requires a reversal of this process. Any empty node (other than the case of a completely empty AMT) must be removed and its parent should have its child link removed. This removal may recurse up the tree to remove many unnecessary intermediate nodes. The root node may also be removed if the current height is no longer necessary to contain the range of indexes still in the AMT. This can be easily determined if _only_ the first bit of the root's bitmap is set, meaning only the left-most is present, which will become the new root node (repeated until the new root has more than the first bit set or height of 0, the single-node case). See https://github.com/ipld/specs/blob/master/data-structures/hashmap.md for a description of a HAMT algorithm. And https://github.com/ipld/specs/blob/master/data-structures/vector.md for a description of a similar algorithm to an AMT that doesn't support internal node compression and therefore doesn't support sparse arrays. Unlike a HAMT, the AMT algorithm doesn't benefit from randomness introduced by a hash algorithm. Therefore an AMT used in cases where user-input can influence indexes, larger-than-necessary tree structures may present risks as well as the challenge imposed by having a strict upper-limit on the indexes addressable by the AMT. A width of 8, using 64-bit integers for indexing, allows for a tree height of up to 64/log2(8)=21 (i.e. a width of 8 has a bitWidth of 3, dividing the 64 bits of the uint into 21 separate per-height indexes). Careful placement of indexes could create extremely sub-optimal forms with large heights connecting leaf nodes that are sparsely packed. The overhead of the large number of intermediate nodes required to connect leaf nodes in AMTs that contain high indexes can be abused to create perverse forms that contain large numbers of nodes to store a minimal number of elements. Minimal nodes will be created where indexes are all in the lower-range. The optimal case for an AMT is contiguous index values starting from zero. As larger indexes are introduced that span beyond the current maximum, more nodes are required to address the new nodes _and_ the existing lower index nodes. Consider a case where a width=8 AMT is only addressing indexes less than 8 and requiring a single height. The introduction of a single index within 8 of the maximum 64-bit unsigned integer range will require the new root to have a height of 21 and have enough connecting nodes between it and both the existing elements and the new upper index. This pattern of behavior may be acceptable if there is significant density of entries under a particular maximum index. There is a direct relationship between the sparseness of index values and the number of nodes required to address the entries. This should be the key consideration when determining whether an AMT is a suitable data-structure for a given application.
Package cidranger provides utility to store CIDR blocks and perform ip inclusion tests against it. To create a new instance of the path-compressed trie: To insert or remove an entry (any object that satisfies the RangerEntry interface): If you desire for any value to be attached to the entry, simply create custom struct that satisfies the RangerEntry interface: To test whether an IP is contained in the constructed networks ranger: To get a list of CIDR blocks in constructed ranger that contains IP: To get a list of all IPv4/IPv6 rangers respectively:
The trie package implements a trie (prefix tree) data structure over byte slices.
Package trie provides a data structure for autocompletion searching of strings.
Package route provides http package-compatible routing library. It can route http requests by hostname, method, path and headers. Route defines simple language for matching requests based on Go syntax. Route provides series of matchers that follow the syntax: Host matcher: Path matcher: Method matcher: Header matcher: Matchers can be combined using && operator: Route library will join the trie-based matchers into one trie matcher when possible, for example: Will be combined into one trie for performance. If you add a third route: It wont be joined ito the trie, and would be matched separately instead.
Package radixtree implements an Adaptive Radix Tree, aka compressed trie or compact prefix tree. It is adaptive in the sense that nodes are not constant size, having as few or many children as needed to branch to all subtrees. This package implements a radix-256 tree where each key symbol (radix) is a byte, allowing up to 256 possible branches to traverse to the next node. The implementation is optimized for read performance and allocates zero bytes of heap memory for read oprations. Once the radix tree is built, it can be repeatedly searched quickly. Concurrent searches are safe since these do not modify the radixtree. Access is not synchronized (not concurrent safe with writes), allowing the caller to synchronize, if needed, in whatever manner works best for the application. The API uses string keys, since strings are immutable and therefore it is not necessary make a copy of the key provided to the radix tree.
Ternary Search Tree
Package httprouter is a trie based high performance HTTP request router. A trivial example is: The router matches incoming requests by the request method and the path. If a handle is registered for this path and method, the router delegates the request to that function. For the methods GET, POST, PUT, PATCH and DELETE shortcut functions exist to register handles, for all other methods router.Handle can be used. The registered path, against which the router matches incoming requests, can contain two types of parameters: Named parameters are dynamic path segments. They match anything until the next '/' or the path end: Catch-all parameters match anything until the path end, including the directory index (the '/' before the catch-all). Since they match anything until the end, catch-all parameters must always be the final path element. The value of parameters is saved as a slice of the Param struct, consisting each of a key and a value. The slice is passed to the Handle func as a third parameter. There are two ways to retrieve the value of a parameter:
Package httprouter is a trie based high performance HTTP request router. A trivial example is: The router matches incoming requests by the request method and the path. If a handle is registered for this path and method, the router delegates the request to that function. For the methods GET, POST, PUT, PATCH and DELETE shortcut functions exist to register handles, for all other methods router.Handle can be used. The registered path, against which the router matches incoming requests, can contain two types of parameters: Named parameters are dynamic path segments. They match anything until the next '/' or the path end: Catch-all parameters match anything until the path end, including the directory index (the '/' before the catch-all). Since they match anything until the end, catch-all parameters must always be the final path element. The value of parameters is saved as a slice of the Param struct, consisting each of a key and a value. The slice is passed to the Handle func as a third parameter. There are two ways to retrieve the value of a parameter:
Package httprouter is a trie based high performance HTTP request router. A trivial example is: The router matches incoming requests by the request method and the path. If a handle is registered for this path and method, the router delegates the request to that function. For the methods GET, POST, PUT, PATCH and DELETE shortcut functions exist to register handles, for all other methods router.Handle can be used. The registered path, against which the router matches incoming requests, can contain two types of parameters: Named parameters are dynamic path segments. They match anything until the next '/' or the path end: Catch-all parameters match anything until the path end, including the directory index (the '/' before the catch-all). Since they match anything until the end, catch-all paramerters must always be the final path element. The value of parameters is saved as a slice of the Param struct, consisting each of a key and a value. The slice is passed to the Handle func as a third parameter. There are two ways to retrieve the value of a parameter:
Package httprouter is a trie based high performance HTTP request router. A trivial example is: The router matches incoming requests by the request method and the path. If a handle is registered for this path and method, the router delegates the request to that function. For the methods GET, POST, PUT, PATCH and DELETE shortcut functions exist to register handles, for all other methods router.Handle can be used. The registered path, against which the router matches incoming requests, can contain two types of parameters: Named parameters are dynamic path segments. They match anything until the next '/' or the path end: Catch-all parameters match anything until the path end, including the directory index (the '/' before the catch-all). Since they match anything until the end, catch-all parameters must always be the final path element. The value of parameters is saved as a slice of the Param struct, consisting each of a key and a value. The slice is passed to the Handle func as a third parameter. There are two ways to retrieve the value of a parameter:
package route provides http package-compatible routing library. It can route http requests by hostname, method, path and headers. Route defines simple language for matching requests based on Go syntax. Route provides series of matchers that follow the syntax: Host matcher: Path matcher: Method matcher: Header matcher: Matchers can be combined using && operator: Route library will join the trie-based matchers into one trie matcher when possible, for example: Will be combined into one trie for performance. If you add a third route: It wont be joined ito the trie, and would be matched separatedly instead.
Package hamt provides a reference implementation of the IPLD HAMT used in the Filecoin blockchain. It includes some optional flexibility such that it may be used for other purposes outside of Filecoin. HAMT is a "hash array mapped trie" https://en.wikipedia.org/wiki/Hash_array_mapped_trie. This implementation extends the standard form by including buckets for the key/value pairs at storage leaves and CHAMP mutation semantics https://michael.steindorfer.name/publications/oopsla15.pdf. The CHAMP invariant and mutation rules provide us with the ability to maintain canonical forms given any set of keys and their values, regardless of insertion order and intermediate data insertion and deletion. Therefore, for any given set of keys and their values, a HAMT using the same parameters and CHAMP semantics, the root node should always produce the same content identifier (CID). The HAMT algorithm hashes incoming keys and uses incrementing subsections of that hash digest at each level of its tree structure to determine the placement of either the entry or a link to a child node of the tree. A `bitWidth` determines the number of bits of the hash to use for index calculation at each level of the tree such that the root node takes the first `bitWidth` bits of the hash to calculate an index and as we move lower in the tree, we move along the hash by `depth x bitWidth` bits. In this way, a sufficiently randomizing hash function will generate a hash that provides a new index at each level of the data structure. An index comprising `bitWidth` bits will generate index values of `[ 0, 2^bitWidth )`. So a `bitWidth` of 8 will generate indexes of 0 to 255 inclusive. Each node in the tree can therefore hold up to `2^bitWidth` elements of data, which we store in an array. In the this HAMT and the IPLD HashMap we store entries in buckets. A `Set(key, value)` mutation where the index generated at the root node for the hash of key denotes an array index that does not yet contain an entry, we create a new bucket and insert the key / value pair entry. In this way, a single node can theoretically hold up to `2^bitWidth x bucketSize` entries, where `bucketSize` is the maximum number of elements a bucket is allowed to contain ("collisions"). In practice, indexes do not distribute with perfect randomness so this maximum is theoretical. Entries stored in the node's buckets are stored in key-sorted order. This HAMT implementation: • Fixes the `bucketSize` to 3. • Defaults the `bitWidth` to 8, however within Filecoin it uses 5 • Defaults the hash algorithm to the 64-bit variant of Murmur3-x64 The algorithm used here is identical to that of the IPLD HashMap algorithm specified at https://github.com/ipld/specs/blob/master/data-structures/hashmap.md. The specific parameters used by Filecoin and the DAG-CBOR block layout differ from the specification and are defined at https://github.com/ipld/specs/blob/master/data-structures/hashmap.md#Appendix-Filecoin-hamt-variant.