The Amazon Web Services SDK for Java provides Java APIs for building software on AWS' cost-effective, scalable, and reliable infrastructure products. The AWS Java SDK allows developers to code against APIs for all of Amazon's infrastructure web services (Amazon S3, Amazon EC2, Amazon SQS, Amazon Relational Database Service, Amazon AutoScaling, etc).
The Amazon Web Services SDK for Java provides Java APIs for building software on AWS' cost-effective, scalable, and reliable infrastructure products. The AWS Java SDK allows developers to code against APIs for all of Amazon's infrastructure web services (Amazon S3, Amazon EC2, Amazon SQS, Amazon Relational Database Service, Amazon AutoScaling, etc).
The Amazon Web Services SDK for Java provides Java APIs for building software on AWS' cost-effective, scalable, and reliable infrastructure products. The AWS Java SDK allows developers to code against APIs for all of Amazon's infrastructure web services (Amazon S3, Amazon EC2, Amazon SQS, Amazon Relational Database Service, Amazon AutoScaling, etc).
The Amazon Web Services SDK for Java provides Java APIs for building software on AWS' cost-effective, scalable, and reliable infrastructure products. The AWS Java SDK allows developers to code against APIs for all of Amazon's infrastructure web services (Amazon S3, Amazon EC2, Amazon SQS, Amazon Relational Database Service, Amazon AutoScaling, etc).
The Amazon Web Services SDK for Java provides Java APIs for building software on AWS' cost-effective, scalable, and reliable infrastructure products. The AWS Java SDK allows developers to code against APIs for all of Amazon's infrastructure web services (Amazon S3, Amazon EC2, Amazon SQS, Amazon Relational Database Service, Amazon AutoScaling, etc).
The Amazon Web Services SDK for Java provides Java APIs for building software on AWS' cost-effective, scalable, and reliable infrastructure products. The AWS Java SDK allows developers to code against APIs for all of Amazon's infrastructure web services (Amazon S3, Amazon EC2, Amazon SQS, Amazon Relational Database Service, Amazon AutoScaling, etc).
The Amazon Web Services SDK for Java provides Java APIs for building software on AWS' cost-effective, scalable, and reliable infrastructure products. The AWS Java SDK allows developers to code against APIs for all of Amazon's infrastructure web services (Amazon S3, Amazon EC2, Amazon SQS, Amazon Relational Database Service, Amazon AutoScaling, etc).
The Amazon Web Services SDK for Java provides Java APIs for building software on AWS' cost-effective, scalable, and reliable infrastructure products. The AWS Java SDK allows developers to code against APIs for all of Amazon's infrastructure web services (Amazon S3, Amazon EC2, Amazon SQS, Amazon Relational Database Service, Amazon AutoScaling, etc).
Bucket Notifications API for AWS S3
The Amazon Web Services SDK for Java provides Java APIs for building software on AWS' cost-effective, scalable, and reliable infrastructure products. The AWS Java SDK allows developers to code against APIs for all of Amazon's infrastructure web services (Amazon S3, Amazon EC2, Amazon SQS, Amazon Relational Database Service, Amazon AutoScaling, etc).
The Amazon Web Services SDK for Java provides Java APIs for building software on AWS' cost-effective, scalable, and reliable infrastructure products. The AWS Java SDK allows developers to code against APIs for all of Amazon's infrastructure web services (Amazon S3, Amazon EC2, Amazon SQS, Amazon Relational Database Service, Amazon AutoScaling, etc).
The Amazon Web Services SDK for Java provides Java APIs for building software on AWS' cost-effective, scalable, and reliable infrastructure products. The AWS Java SDK allows developers to code against APIs for all of Amazon's infrastructure web services (Amazon S3, Amazon EC2, Amazon SQS, Amazon Relational Database Service, Amazon AutoScaling, etc).
The AWS SDK for Java with support for OSGi. The AWS SDK for Java provides Java APIs for building software on AWS' cost-effective, scalable, and reliable infrastructure products. The AWS Java SDK allows developers to code against APIs for all of Amazon's infrastructure web services (Amazon S3, Amazon EC2, Amazon SQS, Amazon Relational Database Service, Amazon AutoScaling, etc).
The Amazon Web Services SDK for Java provides Java APIs for building software on AWS' cost-effective, scalable, and reliable infrastructure products. The AWS Java SDK allows developers to code against APIs for all of Amazon's infrastructure web services (Amazon S3, Amazon EC2, Amazon SQS, Amazon Relational Database Service, Amazon AutoScaling, etc).
The Amazon Web Service (AWS) Cloud plugin allows to use AWS API for the unicast discovery mechanism and add S3 repositories.
The Amazon Web Services SDK for Java provides Java APIs for building software on AWS' cost-effective, scalable, and reliable infrastructure products. The AWS Java SDK allows developers to code against APIs for all of Amazon's infrastructure web services (Amazon S3, Amazon EC2, Amazon SQS, Amazon Relational Database Service, Amazon AutoScaling, etc).
The Amazon Web Service (AWS) Cloud plugin allows to use AWS API for the unicast discovery mechanism and add S3 repositories.
The Amazon Web Services SDK for Java provides Java APIs for building software on AWS' cost-effective, scalable, and reliable infrastructure products. The AWS Java SDK allows developers to code against APIs for all of Amazon's infrastructure web services (Amazon S3, Amazon EC2, Amazon SQS, Amazon Relational Database Service, Amazon AutoScaling, etc).
The Amazon Web Services SDK for Java provides Java APIs for building software on AWS' cost-effective, scalable, and reliable infrastructure products. The AWS Java SDK allows developers to code against APIs for all of Amazon's infrastructure web services (Amazon S3, Amazon EC2, Amazon SQS, Amazon Relational Database Service, Amazon AutoScaling, etc).
The Amazon Web Services SDK for Java provides Java APIs for building software on AWS' cost-effective, scalable, and reliable infrastructure products. The AWS Java SDK allows developers to code against APIs for all of Amazon's infrastructure web services (Amazon S3, Amazon EC2, Amazon SQS, Amazon Relational Database Service, Amazon AutoScaling, etc).
The Amazon Web Services SDK for Java provides Java APIs for building software on AWS' cost-effective, scalable, and reliable infrastructure products. The AWS Java SDK allows developers to code against APIs for all of Amazon's infrastructure web services (Amazon S3, Amazon EC2, Amazon SQS, Amazon Relational Database Service, Amazon AutoScaling, etc).
The Amazon Web Services SDK for Java provides Java APIs for building software on AWS' cost-effective, scalable, and reliable infrastructure products. The AWS Java SDK allows developers to code against APIs for all of Amazon's infrastructure web services (Amazon S3, Amazon EC2, Amazon SQS, Amazon Relational Database Service, Amazon AutoScaling, etc).
MinIO Java SDK for Amazon S3 Compatible Cloud Storage
Simple API to access Amazon S3 Service.
pact-jvm-provider-gradle ======================== Gradle plugin for verifying pacts against a provider. The Gradle plugin creates a task `pactVerify` to your build which will verify all configured pacts against your provider. __*Important Note: Any properties that need to be set when using the Gradle plugin need to be provided with `-P` and not `-D` as with the other Pact-JVM modules!*__ ## To Use It ### For Gradle versions prior to 2.1 #### 1.1. Add the pact-jvm-provider-gradle jar file to your build script class path: ```groovy buildscript { repositories { mavenCentral() } dependencies { classpath 'au.com.dius:pact-jvm-provider-gradle:4.0.0' } } ``` #### 1.2. Apply the pact plugin ```groovy apply plugin: 'au.com.dius.pact' ``` ### For Gradle versions 2.1+ ```groovy plugins { id "au.com.dius.pact" version "4.0.0" } ``` ### 2. Define the pacts between your consumers and providers ```groovy pact { serviceProviders { // You can define as many as you need, but each must have a unique name provider1 { // All the provider properties are optional, and have sensible defaults (shown below) protocol = 'http' host = 'localhost' port = 8080 path = '/' // Again, you can define as many consumers for each provider as you need, but each must have a unique name hasPactWith('consumer1') { // currently supports a file path using file() or a URL using url() pactSource = file('path/to/provider1-consumer1-pact.json') } // Or if you have many pact files in a directory hasPactsWith('manyConsumers') { // Will define a consumer for each pact file in the directory. // Consumer name is read from contents of pact file pactFileLocation = file('path/to/pacts') } } } } ``` ### 3. Execute `gradle pactVerify` ## Specifying the provider hostname at runtime If you need to calculate the provider hostname at runtime, you can give a Closure as the provider `host`. ```groovy pact { serviceProviders { provider1 { host = { lookupHostName() } hasPactWith('consumer1') { pactFile = file('path/to/provider1-consumer1-pact.json') } } } } ``` You can also give a Closure as the provider `port`. ## Specifying the pact file or URL at runtime If you need to calculate the pact file or URL at runtime, you can give a Closure as the provider `pactFile`. ```groovy pact { serviceProviders { provider1 { host = 'localhost' hasPactWith('consumer1') { pactFile = { lookupPactFile() } } } } } ``` ## Starting and shutting down your provider If you need to start-up or shutdown your provider, define Gradle tasks for each action and set `startProviderTask` and `terminateProviderTask` properties of each provider. You could use the jetty tasks here if you provider is built as a WAR file. ```groovy // This will be called before the provider task task('startTheApp') { doLast { // start up your provider here } } // This will be called after the provider task task('killTheApp') { doLast { // kill your provider here } } pact { serviceProviders { provider1 { startProviderTask = startTheApp terminateProviderTask = killTheApp hasPactWith('consumer1') { pactFile = file('path/to/provider1-consumer1-pact.json') } } } } ``` Following typical Gradle behaviour, you can set the provider task properties to the actual tasks, or to the task names as a string (for the case when they haven't been defined yet). ## Preventing the chaining of provider verify task to `pactVerify` Normally a gradle task named `pactVerify_${provider.name}` is created and added as a task dependency for `pactVerify`. You can disable this dependency on a provider by setting `isDependencyForPactVerify` to `false` (defaults to `true`). ```groovy pact { serviceProviders { provider1 { isDependencyForPactVerify = false hasPactWith('consumer1') { pactFile = file('path/to/provider1-consumer1-pact.json') } } } } ``` To run this task, you would then have to explicitly name it as in ```gradle pactVerify_provider1```, a normal ```gradle pactVerify``` would skip it. This can be useful when you want to define two providers, one with `startProviderTask`/`terminateProviderTask` and as second without, so you can manually start your provider (to debug it from your IDE, for example) but still want a `pactVerify` to run normally from your CI build. ## Enabling insecure SSL For providers that are running on SSL with self-signed certificates, you need to enable insecure SSL mode by setting `insecure = true` on the provider. ```groovy pact { serviceProviders { provider1 { insecure = true // allow SSL with a self-signed cert hasPactWith('consumer1') { pactFile = file('path/to/provider1-consumer1-pact.json') } } } } ``` ## Specifying a custom trust store For environments that are running their own certificate chains: ```groovy pact { serviceProviders { provider1 { trustStore = new File('relative/path/to/trustStore.jks') trustStorePassword = 'changeit' hasPactWith('consumer1') { pactFile = file('path/to/provider1-consumer1-pact.json') } } } } ``` `trustStore` is either relative to the current working (build) directory. `trustStorePassword` defaults to `changeit`. NOTE: The hostname will still be verified against the certificate. ## Modifying the HTTP Client Used The default HTTP client is used for all requests to providers (created with a call to `HttpClients.createDefault()`). This can be changed by specifying a closure assigned to createClient on the provider that returns a CloseableHttpClient. For example: ```groovy pact { serviceProviders { provider1 { createClient = { provider -> // This will enable the client to accept self-signed certificates HttpClients.custom().setSSLHostnameVerifier(new NoopHostnameVerifier()) .setSslcontext(new SSLContextBuilder().loadTrustMaterial(null, { x509Certificates, s -> true }) .build()) .build() } hasPactWith('consumer1') { pactFile = file('path/to/provider1-consumer1-pact.json') } } } } ``` ## Modifying the requests before they are sent Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would be authentication tokens, which have a small life span. The Pact Gradle plugin provides a request filter that can be set to a closure on the provider that will be called before the request is made. This closure will receive the HttpRequest prior to it being executed. ```groovy pact { serviceProviders { provider1 { requestFilter = { req -> // Add an authorization header to each request req.addHeader('Authorization', 'OAUTH eyJhbGciOiJSUzI1NiIsImN0eSI6ImFw...') } hasPactWith('consumer1') { pactFile = file('path/to/provider1-consumer1-pact.json') } } } } ``` __*Important Note:*__ You should only use this feature for things that can not be persisted in the pact file. By modifying the request, you are potentially modifying the contract from the consumer tests! ## Turning off URL decoding of the paths in the pact file By default the paths loaded from the pact file will be decoded before the request is sent to the provider. To turn this behaviour off, set the property `pact.verifier.disableUrlPathDecoding` to `true`. __*Important Note:*__ If you turn off the url path decoding, you need to ensure that the paths in the pact files are correctly encoded. The verifier will not be able to make a request with an invalid encoded path. ## Project Properties The following project properties can be specified with `-Pproperty=value` on the command line: |Property|Description| |--------|-----------| |`pact.showStacktrace`|This turns on stacktrace printing for each request. It can help with diagnosing network errors| |`pact.showFullDiff`|This turns on displaying the full diff of the expected versus actual bodies| |`pact.filter.consumers`|Comma seperated list of consumer names to verify| |`pact.filter.description`|Only verify interactions whose description match the provided regular expression| |`pact.filter.providerState`|Only verify interactions whose provider state match the provided regular expression. An empty string matches interactions that have no state| |`pact.filter.pacturl`|This filter allows just the just the changed pact specified in a webhook to be run. It should be used in conjunction with `pact.filter.consumers` | |`pact.verifier.publishResults`|Publishing of verification results will be skipped unless this property is set to 'true'| |`pact.matching.wildcard`|Enables matching of map values ignoring the keys when this property is set to 'true'| |`pact.verifier.disableUrlPathDecoding`|Disables decoding of request paths| |`pact.pactbroker.httpclient.usePreemptiveAuthentication`|Enables preemptive authentication with the pact broker when set to `true`| |`pact.provider.tag`|Sets the provider tag to push before publishing verification results| ## Provider States For a description of what provider states are, see the pact documentations: http://docs.pact.io/documentation/provider_states.html ### Using a state change URL For each provider you can specify a state change URL to use to switch the state of the provider. This URL will receive the providerState description and all the parameters from the pact file before each interaction via a POST. As for normal requests, a request filter (`stateChangeRequestFilter`) can also be set to manipulate the request before it is sent. ```groovy pact { serviceProviders { provider1 { hasPactWith('consumer1') { pactFile = file('path/to/provider1-consumer1-pact.json') stateChangeUrl = url('http://localhost:8001/tasks/pactStateChange') stateChangeUsesBody = false // defaults to true stateChangeRequestFilter = { req -> // Add an authorization header to each request req.addHeader('Authorization', 'OAUTH eyJhbGciOiJSUzI1NiIsImN0eSI6ImFw...') } } // or hasPactsWith('consumers') { pactFileLocation = file('path/to/pacts') stateChangeUrl = url('http://localhost:8001/tasks/pactStateChange') stateChangeUsesBody = false // defaults to true } } } } ``` If the `stateChangeUsesBody` is not specified, or is set to true, then the provider state description and parameters will be sent as JSON in the body of the request : ```json { "state" : "a provider state description", "params": { "a": "1", "b": "2" } } ``` If it is set to false, they will be passed as query parameters. #### Teardown calls for state changes You can enable teardown state change calls by setting the property `stateChangeTeardown = true` on the provider. This will add an `action` parameter to the state change call. The setup call before the test will receive `action=setup`, and then a teardown call will be made afterwards to the state change URL with `action=teardown`. ### Using a Closure You can set a closure to be called before each verification with a defined provider state. The closure will be called with the state description and parameters from the pact file. ```groovy pact { serviceProviders { provider1 { hasPactWith('consumer1') { pactFile = file('path/to/provider1-consumer1-pact.json') // Load a fixture file based on the provider state and then setup some database // data. Does not require a state change request so returns false stateChange = { providerState -> // providerState is an instance of ProviderState def fixture = loadFixtuerForProviderState(providerState) setupDatabase(fixture) } } } } } ``` #### Teardown calls for state changes You can enable teardown state change calls by setting the property `stateChangeTeardown = true` on the provider. This will add an `action` parameter to the state change closure call. The setup call before the test will receive `setup`, as the second parameter, and then a teardown call will be made afterwards with `teardown` as the second parameter. ```groovy pact { serviceProviders { provider1 { hasPactWith('consumer1') { pactFile = file('path/to/provider1-consumer1-pact.json') // Load a fixture file based on the provider state and then setup some database // data. Does not require a state change request so returns false stateChange = { providerState, action -> if (action == 'setup') { def fixture = loadFixtuerForProviderState(providerState) setupDatabase(fixture) } else { cleanupDatabase() } false } } } } } ``` #### Returning values that can be injected You can have values from the provider state callbacks be injected into most places (paths, query parameters, headers, bodies, etc.). This works by using the V3 spec generators with provider state callbacks that return values. One example of where this would be useful is API calls that require an ID which would be auto-generated by the database on the provider side, so there is no way to know what the ID would be beforehand. There are methods on the consumer DSLs that can provider an expression that contains variables (like '/api/user/${id}' for the path). The provider state callback can then return a map for values, and the `id` attribute from the map will be expanded in the expression. For URL callbacks, the values need to be returned as JSON in the response body. ## Filtering the interactions that are verified You can filter the interactions that are run using three project properties: `pact.filter.consumers`, `pact.filter.description` and `pact.filter.providerState`. Adding `-Ppact.filter.consumers=consumer1,consumer2` to the command line will only run the pact files for those consumers (consumer1 and consumer2). Adding `-Ppact.filter.description=a request for payment.*` will only run those interactions whose descriptions start with 'a request for payment'. `-Ppact.filter.providerState=.*payment` will match any interaction that has a provider state that ends with payment, and `-Ppact.filter.providerState=` will match any interaction that does not have a provider state. ## Verifying pact files from a pact broker You can setup your build to validate against the pacts stored in a pact broker. The pact gradle plugin will query the pact broker for all consumers that have a pact with the provider based on its name. For example: ```groovy pact { serviceProviders { provider1 { // You can get the latest pacts from the broker hasPactsFromPactBroker('http://pact-broker:5000/') // And/or you can get the latest pact with a specific tag hasPactsFromPactBrokerWithTag('http://pact-broker:5000/',"tagname") } } } ``` This will verify all pacts found in the pact broker where the provider name is 'provider1'. If you need to set any values on the consumers from the pact broker, you can add a Closure to configure them. ```groovy pact { serviceProviders { provider1 { hasPactsFromPactBroker('http://pact-broker:5000/') { consumer -> stateChange = { providerState -> /* state change code here */ true } } } } } ``` **NOTE: Currently the pacts are fetched from the broker during the configuration phase of the build. This means that if the broker is not available, you will not be able to run any Gradle tasks.** This should be fixed in a forth coming release. In the mean time, to only load the pacts when running the validate task, you can do something like: ```groovy pact { serviceProviders { provider1 { // Only load the pacts from the broker if the start tasks from the command line include pactVerify if ('pactVerify' in gradle.startParameter.taskNames) { hasPactsFromPactBroker('http://pact-broker:5000/') { consumer -> stateChange = { providerState -> /* state change code here */ true } } } } } } ``` ### Using an authenticated Pact Broker You can add the authentication details for the Pact Broker like so: ```groovy pact { serviceProviders { provider1 { hasPactsFromPactBroker('http://pact-broker:5000/', authentication: ['Basic', pactBrokerUser, pactBrokerPassword]) } } } ``` `pactBrokerUser` and `pactBrokerPassword` can be defined in the gradle properties. Or with a bearer token: ```groovy pact { serviceProviders { provider1 { hasPactsFromPactBroker('http://pact-broker:5000/', authentication: ['Bearer', pactBrokerToken]) } } } ``` Preemptive Authentication can be enabled by setting the `pact.pactbroker.httpclient.usePreemptiveAuthentication` property to `true`. ### Allowing just the changed pact specified in a webhook to be verified [4.0.6+] When a consumer publishes a new version of a pact file, the Pact broker can fire off a webhook with the URL of the changed pact file. To allow only the changed pact file to be verified, you can override the URL by using the `pact.filter.consumers` and `pact.filter.pacturl` project properties. For example, running: ```console gradle pactVerify -Ppact.filter.consumers='Foo Web Client' -Ppact.filter.pacturl=https://test.pact.dius.com.au/pacts/provider/Activity%20Service/consumer/Foo%20Web%20Client/version/1.0.1 ``` will only run the verification for Foo Web Client with the given pact file URL. ## Verifying pact files from a S3 bucket **NOTE:** You will need to add the Amazon S3 SDK jar file to your project. Pact files stored in an S3 bucket can be verified by using an S3 URL to the pact file. I.e., ```groovy pact { serviceProviders { provider1 { hasPactWith('consumer1') { pactFile = 's3://bucketname/path/to/provider1-consumer1-pact.json' } } } } ``` **NOTE:** you can't use the `url` function with S3 URLs, as the URL and URI classes from the Java SDK don't support URLs with the s3 scheme. # Publishing pact files to a pact broker The pact gradle plugin provides a `pactPublish` task that can publish all pact files in a directory to a pact broker. To use it, you need to add a publish configuration to the pact configuration that defines the directory where the pact files are and the URL to the pact broker. For example: ```groovy pact { publish { pactDirectory = '/pact/dir' // defaults to $buildDir/pacts pactBrokerUrl = 'http://pactbroker:1234' } } ``` You can set any tags that the pacts should be published with by setting the `tags` property. A common use of this is setting the tag to the current source control branch. This supports using pact with feature branches. ```groovy pact { publish { pactDirectory = '/pact/dir' // defaults to $buildDir/pacts pactBrokerUrl = 'http://pactbroker:1234' tags = [project.pactBrokerTag] } } ``` _NOTE:_ The pact broker requires a version for all published pacts. The `pactPublish` task will use the version of the gradle project by default. You can override this with the `providerVersion` property. Make sure you have set one otherwise the broker will reject the pact files. ## Publishing to an authenticated pact broker To publish to a broker protected by basic auth, include the username/password in the `pactBrokerUrl`. For example: ```groovy pact { publish { pactBrokerUrl = 'https://username:password@mypactbroker.com' } } ``` You can add the username and password as properties. ```groovy pact { publish { pactBrokerUrl = 'https://mypactbroker.com' pactBrokerUsername = 'username' pactBrokerPassword = 'password' } } ``` or with a bearer token ```groovy pact { publish { pactBrokerUrl = 'https://mypactbroker.com' pactBrokerToken = 'token' } } ``` ## Excluding pacts from being published You can exclude some of the pact files from being published by providing a list of regular expressions that match against the base names of the pact files. For example: ```groovy pact { publish { pactBrokerUrl = 'https://mypactbroker.com' excludes = [ '.*\\-\\d+$' ] // exclude all pact files that end with a dash followed by a number in the name } } ``` # Verifying a message provider The Gradle plugin has been updated to allow invoking test methods that can return the message contents from a message producer. To use it, set the way to invoke the verification to `ANNOTATED_METHOD`. This will allow the pact verification task to scan for test methods that return the message contents. Add something like the following to your gradle build file: ```groovy pact { serviceProviders { messageProvider { verificationType = 'ANNOTATED_METHOD' packagesToScan = ['au.com.example.messageprovider.*'] // This is optional, but leaving it out will result in the entire // test classpath being scanned hasPactWith('messageConsumer') { pactFile = url('url/to/messagepact.json') } } } } ``` Now when the `pactVerify` task is run, will look for methods annotated with `@PactVerifyProvider` in the test classpath that have a matching description to what is in the pact file. ```groovy class ConfirmationKafkaMessageBuilderTest { @PactVerifyProvider('an order confirmation message') String verifyMessageForOrder() { Order order = new Order() order.setId(10000004) order.setExchange('ASX') order.setSecurityCode('CBA') order.setPrice(BigDecimal.TEN) order.setUnits(15) order.setGst(new BigDecimal('15.0')) order.setFees(BigDecimal.TEN) def message = new ConfirmationKafkaMessageBuilder() .withOrder(order) .build() JsonOutput.toJson(message) } } ``` It will then validate that the returned contents matches the contents for the message in the pact file. ## Publishing to the Gradle Community Portal To publish the plugin to the community portal: $ ./gradlew :pact-jvm-provider-gradle_2.11:publishPlugins # Verification Reports The default behaviour is to display the verification being done to the console, and pass or fail the build via the normal Gradle mechanism. Additional reports can be generated from the verification. ## Enabling additional reports The verification reports can be controlled by adding a reports section to the pact configuration in the gradle build file. For example: ```groovy pact { reports { defaultReports() // adds the standard console output markdown // report in markdown format json // report in json format } } ``` Any report files will be written to "build/reports/pact". ## Additional Reports The following report types are available in addition to console output (which is enabled by default): `markdown`, `json`. # Publishing verification results to a Pact Broker For pacts that are loaded from a Pact Broker, the results of running the verification can be published back to the broker against the URL for the pact. You will be able to see the result on the Pact Broker home screen. To turn on the verification publishing, set the project property `pact.verifier.publishResults` to `true`. By default, the Gradle project version will be used as the provider version. You can override this by setting the `providerVersion` property. ```groovy pact { serviceProviders { provider1 { providerVersion = { branchName() + '-' + abbreviatedId() } hasPactsFromPactBroker('http://pact-broker:5000/', authentication: ['Basic', pactBrokerUser, pactBrokerPassword]) } } } ``` ## Tagging the provider before verification results are published [4.0.1+] You can have a tag pushed against the provider version before the verification results are published. There are two ways to do this with the Gradle plugin. You can provide a closure in a similar way to the provider version, i.e. ```groovy pact { serviceProviders { provider1 { providerVersion = { branchName() + '-' + abbreviatedId() } providerTag = { branchName() } hasPactsFromPactBroker('http://pact-broker:5000/', authentication: ['Basic', pactBrokerUser, pactBrokerPassword]) } } } ``` or you can set the `pact.provider.tag` JVM system property. For example: ```console $ ./gradlew -d pactverify -Ppact.verifier.publishResults=true -Dpact.provider.tag=Test2 ```
The Amazon Web Services SDK for Java provides Java APIs for building software on AWS' cost-effective, scalable, and reliable infrastructure products. The AWS Java SDK allows developers to code against APIs for all of Amazon's infrastructure web services (Amazon S3, Amazon EC2, Amazon SQS, Amazon Relational Database Service, Amazon AutoScaling, etc).
The Amazon Web Services SDK for Java Mobile provides Java APIs for building software on AWS’ cost-effective, scalable, and reliable infrastructure products. The AWS SDK for Java allows developers to code against APIs for all of Amazon's infrastructure web services (Amazon S3, Amazon EC2, Amazon SQS, Auto Scaling, etc).
This project is an implementation of a Wagon provider for accessing Amazon's Simple Storage Service (S3). It enables Maven to download files from and deploy files to services supporting a S3 api. It draws heavily from code developed by Sean Hennessy, Jeff Caddel at Kuali and Ben Hale at SpringSource
The Amazon Web Services SDK for Android provides Android APIs for building software on AWS’ cost-effective, scalable, and reliable infrastructure products. The AWS SDK for Android allows developers to code against APIs for all of Amazon's infrastructure web services (Amazon S3, Amazon EC2, Amazon SQS, Auto Scaling, etc).
A simple implementation of Amazon S3 written in Java using plain servlet api.