Security News
38% of CISOs Fear They’re Not Moving Fast Enough on AI
CISOs are racing to adopt AI for cybersecurity, but hurdles in budgets and governance may leave some falling behind in the fight against cyber threats.
org.webjars.npm:sha3
Advanced tools
A pure JavaScript implementation of the Keccak family of cryptographic hashing algorithms, most notably including Keccak and SHA3.
:bulb: Legacy Note: In previous versions of this library, the
SHA3Hash
object provided a Keccak hash, not what we currently know as a SHA-3 hash. For backwards-compatibility, this object is still exported. However, users are encouraged to switch to using theSHA3
orKeccak
objects instead, which provide the SHA-3 and Keccak hashing algorithms, respectively.
Via npm
:
$ npm install sha3
Via yarn
:
$ yarn add sha3
You can use this library from Node.js, from web browsers, and/or using ES6 imports.
// Standard FIPS 202 SHA-3 implementation
const { SHA3 } = require('sha3');
// The Keccak hash function is also available
const { Keccak } = require('sha3');
// Standard FIPS 202 SHA-3 implementation
import { SHA3 } from 'sha3';
// The Keccak hash function is also available
import { Keccak } from 'sha3';
FIPS-compatible interfaces for the following algorithms:
SHA3
: The SHA3 algorithm.Keccak
: The Keccak algorithm.SHAKE
: The SHAKE XOF algorithm.:bulb: Legacy Note: Savvy inspectors may notice that
SHA3Hash
is also provided. Prior to v2.0.0, this library only implemented an early version of the SHA3 algorithm. Since then, SHA3 has diverged from Keccak and is using a different padding scheme, but for compatibility, this alias is sticking around for a bit longer.
import { SHA3 } from 'sha3';
const hash = new SHA3(512);
hash.update('foo');
hash.digest('hex');
import { Keccak } from 'sha3';
const hash = new Keccak(256);
hash.update('foo');
hash.digest('hex');
import { SHAKE } from 'sha3';
const hash = new SHAKE(128);
hash.update('foo');
hash.digest({ buffer: Buffer.alloc(2048), format: 'hex' });
All hash implementations provided by this library conform to the following API specification.
#constructor([size=512])
The constructor for each hash (e.g: Keccak
, SHA3
), expects the following parameters:
size
(Number): Optional. The size of the hash to create, in bits. If provided, this must be one of 224
, 256
, 384
, or 512
. Defaults to 512
.// Construct a new Keccak hash of size 256
const hash = new Keccak(256);
#update(data, [encoding='utf8'])
Updates the hash content with the given data. Returns the hash object itself.
data
(Buffer|string): Required. The data to read into the hash.encoding
(string): Optional. The encoding of the given data
, if of type string
. Defaults to 'utf8'
.:bulb: See Buffers and Character Encodings for a list of allowed encodings.
const hash = new Keccak(256);
hash.update('hello');
hash.update('we can also chain these').update('together');
#digest([encoding='binary'])
Digests the hash and returns the result. After calling this function, the hash may continue to receive input.
encoding
(string): Optional. The encoding to use for the returned digest. Defaults to 'binary'
.If an encoding
is provided and is a value other than 'binary'
, then this function returns a string
.
Otherwise, it returns a Buffer
.
:bulb: See Buffers and Character Encodings for a list of allowed encodings.
const hash = new Keccak(256);
hash.update('hello');
hash.digest('hex');
// => hash of 'hello' as a hex-encoded string
#digest([options={}])
Digests the hash and returns the result. After calling this function, the hash may continue to receive input.
Options include:
buffer
(Buffer): Optional. A pre-allocated buffer to fill with output bytes. This is how XOF algorithms like SHAKE can be used to obtain an arbitrary number of hash bytes.format
(string): Optional. The encoding to use for the returned digest. Defaults to 'binary'
. If buffer
is also provided, this value will passed directly into Buffer#toString()
on the given buffer.padding
(byte): Optional. Override the padding used to pad the input bytes to the algorithm's block size. Typically this should be omitted, but may be required if building additional cryptographic algorithms on top of this library.If a format
is provided and is a value other than 'binary'
, then this function returns a string
.
Otherwise, it returns a Buffer
.
const hash = new Keccak(256);
hash.update('hello');
hash.digest({ buffer: Buffer.alloc(32), format: 'hex' });
// => hash of 'hello' as a hex-encoded string
#reset()
Resets a hash to its initial state.
const hash = new Keccak(256);
hash.update('hello');
hash.digest();
// => hash of 'hello'
hash.reset();
hash.update('world');
hash.digest();
// => hash of 'world'
Run yarn test
for the full test suite.
Cryptographic hashes provide integrity, but do not provide authenticity or confidentiality. Hash functions are one part of the cryptographic ecosystem, alongside other primitives like ciphers and MACs. If considering this library for the purpose of protecting passwords, you may actually be looking for a key derivation function, which can provide much better security guarantees for this use case.
The following resources were invaluable to this implementation and deserve special thanks for work well done:
Keccak pseudocode: The Keccak team's excellent pseudo-code and technical descriptions.
mjosaarinen/tiny_sha3: Markku-Juhani O. Saarinen's compact, legible, and hackable implementation.
Phusion: For the initial release and maintenance of this project, and gracious hand-off to Twuni for continued development and maintenance.
FAQs
WebJar for sha3
We found that org.webjars.npm:sha3 demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 0 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
CISOs are racing to adopt AI for cybersecurity, but hurdles in budgets and governance may leave some falling behind in the fight against cyber threats.
Research
Security News
Socket researchers uncovered a backdoored typosquat of BoltDB in the Go ecosystem, exploiting Go Module Proxy caching to persist undetected for years.
Security News
Company News
Socket is joining TC54 to help develop standards for software supply chain security, contributing to the evolution of SBOMs, CycloneDX, and Package URL specifications.