Security News
pnpm 10.0.0 Blocks Lifecycle Scripts by Default
pnpm 10 blocks lifecycle scripts by default to improve security, addressing supply chain attack risks but sparking debate over compatibility and workflow changes.
@agoric/marshal
Advanced tools
"Marshalling" refers to the conversion of structured data (a tree or graph of objects) into a string, and back again.
The marshal
module helps with conversion of "capability-bearing data", in
which some portion of the structured input represents "pass-by-proxy" or
"pass-by-presence" objects. These should be serialized into markers that
refer to special "reference identifiers". These identifiers are collected in
an array, and the serialize()
function returns a two-element structure
known as "CapData": a body
that contains the usual string, and a new
slots
array that holds the reference identifiers. unserialize()
takes
this CapData structure and returns the object graph. The marshaller must be
taught (with a pair of callbacks) how to create the presence markers, and how
to turn these markers back into proxies/presences.
marshal
uses JSON to serialize the object graph, but knows how to serialize
Javascript objects that cannot be expressed directly as JSON, such as
BigInt
objects, undefined
, NaN
, and others.
This module exports a makeMarshal()
function, which must be called with two
callbacks (serializeSlot
and unserializeSlot
), and returns an object with
serialize
and unserialize
properties. For ordinary (non-capability)
serialization, you can omit the callbacks:
import harden from '@agoric/harden';
import { makeMarshal } from '@agoric/marshal';
const m = makeMarshal();
const o = harden({a: 1});
const s = m.serialize(o);
console.log(s); // { body: '{"a":1}', slots: [] }
const o2 = m.unserialize(s);
console.log(o2); // { a: 1 }
The entire object graph must be "hardened" (recursively frozen), such as done
by the @agoric/harden
module. The serialization function will refuse to
marshal any graph that contains a non-frozen object.
marshal
uses a special marker object to represent both Presences and data
which cannot be expressed directly in JSON. This marker uses a property named
@qclass
that identifies the type of the object. For example, a Javascript
NaN
is serialized into:
m.serialize(NaN);
// { body: '{"@qclass":"NaN"}', slots: [] }
Cyclic data structures are handled by tracking the objects we've serialized before in a WeakMap, and replacing them with an index number if they appear a second time. This results in an "ibid" structure. When unserializing, a matching table is maintained, and "ibid" markers caues additional references to previously-unpacked to be added to the reconstructed object graph:
const o = harden({a: 1});
const oo = harden([o, o]);
const soo = m.serialize(oo);
// { body: '[{"a":1},{"@qclass":"ibid","index":1}]', slots: [] }
const oo2 = m.unserialize(soo);
// [ { a: 1 }, { a: 1 } ]
console.log(oo2[0] === oo2[1]); // true
const cycle = [];
cycle.push(cycle);
m.serialize(cycle);
// { body: '[{"@qclass":"ibid","index":0}]', slots: [] }
This "ibid table" is new for each invocation of m.serialize()
or
m.unserialize()
, so each serialized CapData is independent.
(TODO) To tolerate a @qclass
property appearing in the data being
serialized, the library uses a structure known as a "Hilbert Hotel", which
wraps the troublesome object in a new layer of serialization.
marshal
makes a distinction between objects that are pass-by-presence, and
those which are pass-by-copy.
To qualify as pass-by-presence, all enumerable properties of the object (and of all objects in the inheritance hierarchy) must be methods, not data. Pass-by-presence objects usually have identity (assuming the serializeSlot/unserializeSlot callbacks behave well), so passing the same object through multiple calls will result in multiple references to the same output object.
To qualify as pass-by-copy, the enumerable string-named properties of the
object must data, not methods: they can be Arrays, strings, numbers, and
other pass-by-copy objects, but not functions. In addition, the object must
either inherit from Object.prototype
or null
. Pass-by-copy objects do not
generally have identity: the unserializer is not obligated to produce the
same output object for multiple appearances of the input object.
Mixed objects (some data properties, some functions) are rejected.
Empty objects (which qualify as both types) are treated as pass-by-presence, so they can be used as marker objects which can be compared for identity. These are especially useful as keys WeakMaps for the "rights amplification" pattern.
When m.serialize()
encounters a pass-by-presence object, it will invoke the
serializeSlot
callback. This will be given the value to be serialized, a
mutable array of slot identifiers, and a mutable Map from values to slot
indices. If the value has not been seen before, the callback should allocate
a new slot identifier, append it to the array, and add the new index into the
Map. If it has been seen before, it should re-use the old index, and just
update the Map. In both cases, it should return the "marker", a
JSON-serializable data structure that tells the unserializer how to handle
the slot. This should be something like { "@qclass": "slot", "index": NNN }
, where the index
points into the array of slot identifiers.
The array of slot identifiers is returned as the slots
portion of the
CapData structure.
m.unserialize()
invokes the unserializeSlot
callback each time it
encounters a @qclass: "slot"
in the serialized body. This should create and
return a proxy (or other representative) of the pass-by-presence object.
0.1.1 (2019-11-02)
agoric
(671ea78)FAQs
marshal
The npm package @agoric/marshal receives a total of 309 weekly downloads. As such, @agoric/marshal popularity was classified as not popular.
We found that @agoric/marshal demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 5 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
pnpm 10 blocks lifecycle scripts by default to improve security, addressing supply chain attack risks but sparking debate over compatibility and workflow changes.
Product
Socket now supports uv.lock files to ensure consistent, secure dependency resolution for Python projects and enhance supply chain security.
Research
Security News
Socket researchers have discovered multiple malicious npm packages targeting Solana private keys, abusing Gmail to exfiltrate the data and drain Solana wallets.