CDK Construct library for building ECS services
This library provides a high level, extensible pattern for constructing services
deployed using Amazon ECS.
The Service
construct provided by this module can be extended with optional ServiceExtension
classes that add supplemental ECS features including:
The ServiceExtension
class is an abstract class which you can also implement in
order to build your own custom service extensions for modifying your service, or
attaching your own custom resources or sidecars.
Example
import { AppMeshExtension, CloudwatchAgentExtension, Container, Environment, FireLensExtension, HttpLoadBalancerExtension, Service, ServiceDescription, XRayExtension } from 'ecs-service-builder';
const environment = new Environment(stack, 'production');
const nameDescription = new ServiceDescription();
nameDescription.add(new Container({
cpu: 1024,
memoryMiB: 2048,
trafficPort: 80,
image: ContainerImage.fromRegistry('nathanpeck/name'),
environment: {
PORT: '80',
},
}));
nameDescription.add(new AppMeshExtension({ mesh }));
nameDescription.add(new FireLensExtension());
nameDescription.add(new XRayExtension());
nameDescription.add(new CloudwatchAgentExtension());
nameDescription.add(new HttpLoadBalancerExtension());
const nameService = new Service(stack, 'name', {
environment: environment,
serviceDescription: nameDescription,
});
Creating an Environment
An Environment
is a place to deploy your services. You can have multiple environments
on a single AWS account. For example, you could create a test
environment as well
as a production
environment so you have a place to verify that your application
works as intended before you deploy it to a live environment.
Each environment is isolated from other environments. In other words,
when you create an environment, by default the construct supplies its own VPC,
ECS Cluster, and any other required resources for the environment:
const environment = new Environment(stack, 'production');
However, you can also choose to build an environment out of a pre-existing VPC
or ECS Cluster:
const vpc = new ec2.Vpc(stack, 'VPC');
const cluster = new ecs.Cluster(stack, 'Cluster', { vpc });
const environment = new Environment(stack, 'production', {
vpc,
cluster,
});
Defining your ServiceDescription
The ServiceDescription
defines what application you want the service to run and
what optional extensions you want to add to the service. The most basic form of a ServiceDescription
looks like this:
const nameDescription = new ServiceDescription();
nameDescription.add(new Container({
cpu: 1024,
memoryMiB: 2048,
trafficPort: 80,
image: ContainerImage.fromRegistry('nathanpeck/name'),
environment: {
PORT: '80',
},
}));
Every ServiceDescription
requires at minimum that you add a Container
extension
which defines the main application (essential) container to run for the service.
After that, you can optionally enable additional features for the service using the ServiceDescription.add()
method:
nameDescription.add(new AppMeshExtension({ mesh }));
nameDescription.add(new FireLensExtension());
nameDescription.add(new XRayExtension());
nameDescription.add(new CloudwatchAgentExtension());
nameDescription.add(new HttpLoadBalancerExtension());
nameDescription.add(new AssignPublicIpExtension());
Launching the ServiceDescription
as a Service
Once the service description is defined, you can launch it as a service:
const nameService = new Service(stack, 'name', {
environment: environment,
serviceDescription: nameDescription,
});
At this point, all the service resources will be created. This includes the ECS Task
Definition, Service, as well as any other attached resources, such as App Mesh Virtual
Node or an Application Load Balancer.
Creating your own taskRole
Sometimes the taskRole should be defined outside of the service so that you can create strict resource policies (ie. S3 bucket policies) that are restricted to a given taskRole:
const taskRole = new iam.Role(stack, 'CustomTaskRole', {
assumedBy: new iam.ServicePrincipal('ecs-tasks.amazonaws.com'),
});
const nameService = new Service(stack, 'name', {
environment: environment,
serviceDescription: nameDescription,
taskRole,
});
Task Auto-Scaling
You can configure the task count of a service to match demand. The recommended way of achieving this is to configure target tracking policies for your service which scales in and out in order to keep metrics around target values.
You need to configure an auto scaling target for the service by setting the minTaskCount
(defaults to 1) and maxTaskCount
in the Service
construct. Then you can specify target values for "CPU Utilization" or "Memory Utilization" across all tasks in your service. Note that the desiredCount
value will be set to undefined
if the auto scaling target is configured.
If you want to configure auto-scaling policies based on resources like Application Load Balancer or SQS Queues, you can set the corresponding resource-specific fields in the extension. For example, you can enable target tracking scaling based on Application Load Balancer request count as follows:
const stack = new cdk.Stack();
const environment = new Environment(stack, 'production');
const serviceDescription = new ServiceDescription();
serviceDescription.add(new Container({
cpu: 256,
memoryMiB: 512,
trafficPort: 80,
image: ecs.ContainerImage.fromRegistry('my-alb'),
}));
serviceDescription.add(new HttpLoadBalancerExtension({ requestsPerTarget: 10 }));
new Service(stack, 'my-service', {
environment,
serviceDescription,
desiredCount: 5,
autoScaleTaskCount: {
maxTaskCount: 10,
targetCpuUtilization: 70,
targetMemoryUtilization: 50,
},
});
You can also define your own service extensions for other auto-scaling policies for your service by making use of the scalableTaskCount
attribute of the Service
class.
Creating your own custom ServiceExtension
In addition to using the default service extensions that come with this module, you
can choose to implement your own custom service extensions. The ServiceExtension
class is an abstract class you can implement yourself. The following example
implements a custom service extension that could be added to a service in order to
autoscale it based on scaling intervals of SQS Queue size:
export class MyCustomAutoscaling extends ServiceExtension {
constructor() {
super('my-custom-autoscaling');
this.scalingSteps = [{ upper: 0, change: -1 }, { lower: 100, change: +1 }, { lower: 500, change: +5 }];
this.sqsQueue = new sqs.Queue(this.scope, 'my-queue');
}
public useService(service: ecs.Ec2Service | ecs.FargateService) {
this.parentService.scalableTaskCount.scaleOnMetric('QueueMessagesVisibleScaling', {
metric: this.sqsQueue.metricApproximateNumberOfMessagesVisible(),
scalingSteps: this.scalingSteps,
});
}
}
This ServiceExtension
can now be reused and added to any number of different
service descriptions. This allows you to develop reusable bits of configuration,
attach them to many different services, and centrally manage them. Updating the
ServiceExtension
in one place would update all services that use it, instead of
requiring decentralized updates to many different services.
Every ServiceExtension
can implement the following hooks to modify the properties
of constructs, or make use of the resulting constructs:
addHooks()
- This hook is called after all the extensions are added to a
ServiceDescription, but before any of the other extension hooks have been run.
It gives each extension a chance to do some inspection of the overall ServiceDescription
and see what other extensions have been added. Some extensions may want to register
hooks on the other extensions to modify them. For example, the Firelens extension
wants to be able to modify the settings of the application container to route logs
through Firelens.modifyTaskDefinitionProps()
- This is hook is passed the proposed
ecs.TaskDefinitionProps for a TaskDefinition that is about to be created.
This allows the extension to make modifications to the task definition props
before the TaskDefinition is created. For example, the App Mesh extension modifies
the proxy settings for the task.useTaskDefinition()
- After the TaskDefinition is created, this hook is
passed the actual TaskDefinition construct that was created. This allows the
extension to add containers to the task, modify the task definition's IAM role,
etc.resolveContainerDependencies()
- Once all extensions have added their containers,
each extension is given a chance to modify its container's dependsOn
settings.
Extensions need to check and see what other extensions were enabled and decide
whether their container needs to wait on another container to start first.modifyServiceProps()
- Before an Ec2Service or FargateService is created, this
hook is passed a draft version of the service props to change. Each extension adds
its own modifications to the service properties. For example, the App Mesh extension
needs to modify the service settings to enable CloudMap service discovery.useService()
- After the service is created, this hook is given a chance to
utilize that service. This is used by extensions like the load balancer or App Mesh
extension, which create and link other AWS resources to the ECS extension.connectToService()
- This hook is called when a user wants to connect one service
to another service. It allows an extension to implement logic about how to allow
connections from one service to another. For example, the App Mesh extension implements
this method in order to easily connect one service mesh service to another, which
allows the service's Envoy proxy sidecars to route traffic to each other.
Connecting services
One of the hooks that a ServiceExtension
can implement is a hook for connection
logic. This is utilized when connecting one service to another service, e.g.
connecting a user facing web service with a backend API. Usage looks like this:
const frontend = new Service(stack, 'frontend', {
environment,
serviceDescription: frontendDescription
});
const backend = new Service(stack, 'backend', {
environment,
serviceDescription: backendDescription
});
frontend.connectTo(backend);
The address that a service will use to talk to another service depends on the
type of ingress that has been created by the extension that did the connecting.
For example, if an App Mesh extension has been used, then the service is accessible
at a DNS address of <service name>.<environment name>
. For example:
const environment = new Environment(stack, 'production');
const frontendDescription = new ServiceDescription();
frontendDescription.add(new Container({
cpu: 1024,
memoryMiB: 2048,
trafficPort: 80,
image: ContainerImage.fromRegistry('my-frontend-service'),
environment: {
BACKEND_URL: 'http://backend.production'
},
}));
const frontend = new Service(stack, 'frontend', {
environment,
serviceDescription: frontendDescription
});
const backendDescription = new ServiceDescription();
backendDescription.add(new Container({
cpu: 1024,
memoryMiB: 2048,
trafficPort: 80,
image: ContainerImage.fromRegistry('my-backend-service'),
environment: {
FRONTEND_URL: 'http://frontend.production'
},
}));
const backend = new Service(stack, 'backend', {
environment,
serviceDescription: backendDescription
});
frontend.connectTo(backend);
The above code uses the well-known service discovery name for each
service, and passes it as an environment variable to the container so
that the container knows what address to use when communicating to
the other service.
Importing a pre-existing cluster
To create an environment with a pre-existing cluster, you must import the cluster first, then use Environment.fromEnvironmentAttributes()
. When a cluster is imported into an environment, the cluster is treated as immutable. As a result, no extension may modify the cluster to change a setting.
const cluster = ecs.Cluster.fromClusterAttributes(stack, 'Cluster', {
...
});
const environment = Environment.fromEnvironmentAttributes(stack, 'Environment', {
capacityType: EnvironmentCapacityType.EC2,
cluster,
});
Injecter Extension
This service extension accepts a list of Injectable
resources. It grants access to these resources and adds the necessary environment variables to the tasks that are part of the service.
For example, an InjectableTopic
is an SNS Topic that grants permission to the task role and adds the topic ARN as an environment variable to the task definition.
Publishing to SNS Topics
You can use this extension to set up publishing permissions for SNS Topics.
nameDescription.add(new InjecterExtension({
injectables: [new InjectableTopic({
topic: new sns.Topic(stack, 'my-topic'),
})],
}));
Queue Extension
This service extension creates a default SQS Queue eventsQueue
for the service (if not provided) and optionally also accepts list of ISubscribable
objects that the eventsQueue
can subscribe to. The service extension creates the subscriptions and sets up permissions for the service to consume messages from the SQS Queue.
Setting up SNS Topic Subscriptions for SQS Queues
You can use this extension to set up SNS Topic subscriptions for the eventsQueue
. To do this, create a new object of type TopicSubscription
for every SNS Topic you want the eventsQueue
to subscribe to and provide it as input to the service extension.
const myServiceDescription = nameDescription.add(new QueueExtension({
subscriptions: [new TopicSubscription({
topic: new sns.Topic(stack, 'my-topic'),
}],
}));
const myQueueExtension = myServiceDescription.extensions.queue as QueueExtension;
const myEventsQueue = myQueueExtension.eventsQueue;
For setting up a topic-specific queue subscription, you can provide a custom queue in the TopicSubscription
object along with the SNS Topic. The extension will set up a topic subscription for the provided queue instead of the default eventsQueue
of the service.
nameDescription.add(new QueueExtension({
queue: myEventsQueue,
subscriptions: [new TopicSubscription({
topic: new sns.Topic(stack, 'my-topic'),
queue: myTopicQueue,
}],
}));
Publish/Subscribe Service Pattern
The Publish/Subscribe Service Pattern is used for implementing asynchronous communication between services. It involves 'publisher' services emitting events to SNS Topics, which are passed to subscribed SQS queues and then consumed by 'worker' services.
The following example adds the InjecterExtension
to a Publisher
Service which can publish events to an SNS Topic and adds the QueueExtension
to a Worker
Service which can poll its eventsQueue
to consume messages populated by the topic.
const environment = new Environment(stack, 'production');
const pubServiceDescription = new ServiceDescription();
pubServiceDescription.add(new Container({
cpu: 256,
memoryMiB: 512,
trafficPort: 80,
image: ecs.ContainerImage.fromRegistry('sns-publish'),
}));
const myTopic = new sns.Topic(stack, 'myTopic');
pubServiceDescription.add(new InjecterExtension({
injectables: [new InjectableTopic({
topic: myTopic,
}],
}));
new Service(stack, 'Publisher', {
environment: environment,
serviceDescription: pubServiceDescription,
});
const subServiceDescription = new ServiceDescription();
subServiceDescription.add(new Container({
cpu: 256,
memoryMiB: 512,
trafficPort: 80,
image: ecs.ContainerImage.fromRegistry('sqs-reader'),
}));
subServiceDescription.add(new QueueExtension({
subscriptions: [new TopicSubscription({
topic: myTopic,
}],
}));
new Service(stack, 'Worker', {
environment: environment,
serviceDescription: subServiceDescription,
});
We encourage the development of Community Service Extensions that support
advanced features. Here are some useful extensions that we have reviewed:
Please submit a pull request so that we can review your service extension and
list it here.