Table of contents
Installation
To install the stable version:
npm i io-ts fp-ts
Note: fp-ts
is a peer dependency for io-ts
The idea
A value of type Type<A, O, I>
(called "codec") is the runtime representation of the static type A
.
A codec can:
- decode inputs of type
I
(through decode
) - encode outputs of type
O
(through encode
) - be used as a custom type guard (through
is
)
class Type<A, O, I> {
constructor(
readonly name: string,
readonly is: (u: unknown) => u is A,
readonly validate: (input: I, context: Context) => Either<Errors, A>,
readonly encode: (a: A) => O
) {}
decode(i: I): Either<Errors, A>
}
The Either
type returned by decode
is defined in fp-ts, a library containing implementations of common algebraic types in TypeScript.
The Either
type represents a value of one of two possible types (a disjoint union). An instance of Either
is either an instance of Left
or Right
:
type Either<E, A> =
| {
readonly _tag: 'Left'
readonly left: E
}
| {
readonly _tag: 'Right'
readonly right: A
}
Convention dictates that Left
is used for failure and Right
is used for success.
Example
A codec representing string
can be defined as:
import * as t from 'io-ts'
const string = new t.Type<string, string, unknown>(
'string',
(input: unknown): input is string => typeof input === 'string',
(input, context) => (typeof input === 'string' ? t.success(input) : t.failure(input, context)),
t.identity
)
and we can use it as follows:
import { isRight } from 'fp-ts/lib/Either'
isRight(string.decode('a string'))
isRight(string.decode(null))
More generally the result of calling decode
can be handled using fold
along with pipe
(which is similar to the pipeline operator)
import * as t from 'io-ts'
import { pipe } from 'fp-ts/lib/pipeable'
import { fold } from 'fp-ts/lib/Either'
const onLeft = (errors: t.Errors): string => `${errors.length} error(s) found`
const onRight = (s: string) => `No errors: ${s}`
pipe(t.string.decode('a string'), fold(onLeft, onRight))
pipe(t.string.decode(null), fold(onLeft, onRight))
We can combine these codecs through combinators to build composite types which represent entities like domain models, request payloads etc. in our applications:
import * as t from 'io-ts'
const User = t.type({
userId: t.number,
name: t.string
})
So this is equivalent to defining something like:
type User = {
userId: number
name: string
}
The advantage of using io-ts
to define the runtime type is that we can validate the type at runtime, and we can also extract the corresponding static type, so we don’t have to define it twice.
TypeScript integration
Codecs can be inspected:
This library uses TypeScript extensively. Its API is defined in a way which automatically infers types for produced
values
Note that the type annotation isn't needed, TypeScript infers the type automatically based on a schema (and comments are preserved).
Static types can be extracted from codecs using the TypeOf
operator:
type User = t.TypeOf<typeof User>
type User = {
userId: number
name: string
}
TypeScript compatibility
The stable version is tested against TypeScript 3.5.2
io-ts version | required TypeScript version |
---|
2.x+ | 3.5.2+ |
1.6.x+ | 3.2.2+ |
1.5.3 | 3.0.1+ |
1.5.2- | 2.7.2+ |
Note. This library is conceived, tested and is supposed to be consumed by TypeScript with the strict
flag turned on.
Note. If you are running < typescript@3.0.1
you have to polyfill unknown
.
You can use unknown-ts as a polyfill.
Error reporters
A reporter implements the following interface
interface Reporter<A> {
report: (validation: Validation<any>) => A
}
This package exports a default PathReporter
reporter
Example
import { PathReporter } from 'io-ts/lib/PathReporter'
const result = User.decode({ name: 'Giulio' })
console.log(PathReporter.report(result))
You can define your own reporter. Errors
has the following type
interface ContextEntry {
readonly key: string
readonly type: Decoder<any, any>
}
interface Context extends ReadonlyArray<ContextEntry> {}
interface ValidationError {
readonly value: unknown
readonly context: Context
}
interface Errors extends Array<ValidationError> {}
Example
import { pipe } from 'fp-ts/lib/pipeable'
import { fold } from 'fp-ts/lib/Either'
const getPaths = <A>(v: t.Validation<A>): Array<string> => {
return pipe(
v,
fold(
errors => errors.map(error => error.context.map(({ key }) => key).join('.')),
() => ['no errors']
)
)
}
console.log(getPaths(User.decode({})))
Custom error messages
You can set your own error message by providing a message
argument to failure
Example
import { either } from 'fp-ts/lib/Either'
const NumberFromString = new t.Type<number, string, unknown>(
'NumberFromString',
t.number.is,
(u, c) =>
either.chain(t.string.validate(u, c), s => {
const n = +s
return isNaN(n) ? t.failure(u, c, 'cannot parse to a number') : t.success(n)
}),
String
)
console.log(PathReporter.report(NumberFromString.decode('a')))
You can also use the withMessage
helper from io-ts-types
Implemented types / combinators
Type | TypeScript | codec / combinator |
---|
null | null | t.null or t.nullType |
undefined | undefined | t.undefined |
void | void | t.void or t.voidType |
string | string | t.string |
number | number | t.number |
boolean | boolean | t.boolean |
unknown | unknown | t.unknown |
array of unknown | Array<unknown> | t.UnknownArray |
array of type | Array<A> | t.array(A) |
record of unknown | Record<string, unknown> | t.UnknownRecord |
record of type | Record<K, A> | t.record(K, A) |
function | Function | t.Function |
literal | 's' | t.literal('s') |
partial | Partial<{ name: string }> | t.partial({ name: t.string }) |
readonly | Readonly<A> | t.readonly(A) |
readonly array | ReadonlyArray<A> | t.readonlyArray(A) |
type alias | type T = { name: A } | t.type({ name: A }) |
tuple | [ A, B ] | t.tuple([ A, B ]) |
union | A | B | t.union([ A, B ]) |
intersection | A & B | t.intersection([ A, B ]) |
keyof | keyof M | t.keyof(M) (only supports string keys) |
recursive types | | t.recursion(name, definition) |
branded types / refinements | ✘ | t.brand(A, predicate, brand) |
integer | ✘ | t.Int (built-in branded codec) |
exact types | ✘ | t.exact(type) |
strict | ✘ | t.strict({ name: A }) (an alias of t.exact(t.type({ name: A }))) |
Recursive types
Recursive types can't be inferred by TypeScript so you must provide the static type as a hint
interface Category {
name: string
categories: Array<Category>
}
const Category: t.Type<Category> = t.recursion('Category', () =>
t.type({
name: t.string,
categories: t.array(Category)
})
)
Mutually recursive types
interface Foo {
type: 'Foo'
b: Bar | undefined
}
interface Bar {
type: 'Bar'
a: Foo | undefined
}
const Foo: t.Type<Foo> = t.recursion('Foo', () =>
t.type({
type: t.literal('Foo'),
b: t.union([Bar, t.undefined])
})
)
const Bar: t.Type<Bar> = t.recursion('Bar', () =>
t.type({
type: t.literal('Bar'),
a: t.union([Foo, t.undefined])
})
)
Branded types / Refinements
You can brand / refine a codec (any codec) using the brand
combinator
interface PositiveBrand {
readonly Positive: unique symbol
}
const Positive = t.brand(
t.number,
(n): n is t.Branded<number, PositiveBrand> => n >= 0,
'Positive'
)
type Positive = t.TypeOf<typeof Positive>
Branded codecs can be merged with t.intersection
const PositiveInt = t.intersection([t.Int, Positive])
type PositiveInt = t.TypeOf<typeof PositiveInt>
Exact types
You can make a codec exact (which means that additional properties are stripped) using the exact
combinator
const ExactUser = t.exact(User)
User.decode({ userId: 1, name: 'Giulio', age: 45 })
ExactUser.decode({ userId: 1, name: 'Giulio', age: 43 })
Mixing required and optional props
You can mix required and optional props using an intersection
const A = t.type({
foo: t.string
})
const B = t.partial({
bar: t.number
})
const C = t.intersection([A, B])
type C = t.TypeOf<typeof C>
type C = {
foo: string
} & {
bar?: number | undefined
}
You can apply partial
to an already defined codec via its props
field
const PartialUser = t.partial(User.props)
type PartialUser = t.TypeOf<typeof PartialUser>
type PartialUser = {
name?: string
age?: number
}
Custom types
You can define your own types. Let's see an example
import { either } from 'fp-ts/lib/Either'
const DateFromString = new t.Type<Date, string, unknown>(
'DateFromString',
(u): u is Date => u instanceof Date,
(u, c) =>
either.chain(t.string.validate(u, c), s => {
const d = new Date(s)
return isNaN(d.getTime()) ? t.failure(u, c) : t.success(d)
}),
a => a.toISOString()
)
const s = new Date(1973, 10, 30).toISOString()
DateFromString.decode(s)
DateFromString.decode('foo')
Note that you can deserialize while validating.
Generic Types
Polymorphic codecs are represented using functions.
For example, the following typescript:
interface ResponseBody<T> {
result: T
_links: Links
}
interface Links {
previous: string
next: string
}
Would be:
const responseBody = <C extends t.Mixed>(codec: C) =>
t.type({
result: codec,
_links: Links
})
const Links = t.type({
previous: t.string,
next: t.string
})
And used like:
const UserModel = t.type({
name: t.string
})
functionThatRequiresRuntimeType(responseBody(t.array(UserModel)), ...params)
Piping
You can pipe two codecs if their type parameters do align
const NumberCodec = new t.Type<number, string, string>(
'NumberCodec',
t.number.is,
(s, c) => {
const n = parseFloat(s)
return isNaN(n) ? t.failure(s, c) : t.success(n)
},
String
)
const NumberFromString = t.string.pipe(NumberCodec, 'NumberFromString')
io-ts@2.x
io-ts@1.x
- geojson-iots - codecs for GeoJSON as defined in rfc7946 made with
io-ts
- graphql-to-io-ts - Generate typescript and corresponding io-ts types from a graphql schema
Tips and Tricks
Union of string literals
Use keyof
instead of union
when defining a union of string literals
const Bad = t.union([
t.literal('foo'),
t.literal('bar'),
t.literal('baz')
])
const Good = t.keyof({
foo: null,
bar: null,
baz: null
})
Benefits
- unique check for free
- better performance,
O(log(n))
vs O(n)
Beware that keyof
is designed to work with objects containing string keys. If you intend to define a numbers enumeration, you have to use an union
of number literals :
const HttpCode = t.union([
t.literal(200),
t.literal(201),
t.literal(202)
])