Research
Security News
Malicious npm Packages Inject SSH Backdoors via Typosquatted Libraries
Socket’s threat research team has detected six malicious npm packages typosquatting popular libraries to insert SSH backdoors.
@cakoose/re2
Advanced tools
Bindings for RE2: fast, safe alternative to backtracking regular expression engines.
This project provides bindings for RE2: fast, safe alternative to backtracking regular expression engines written by Russ Cox. To learn more about RE2, start with an overview Regular Expression Matching in the Wild. More resources can be found at his Implementing Regular Expressions page.
RE2
's regular expression language is almost a superset of what is provided by RegExp
(see Syntax),
but it lacks two features: backreferences and lookahead assertions. See below for more details.
RE2
object emulates standard RegExp
making it a practical drop-in replacement in most cases.
RE2
is extended to provide String
-based regular expression methods as well. To help converting
RegExp
objects to RE2
its constructor can take RegExp
directly honoring all properties.
It can work with node.js buffers directly reducing overhead on recoding and copying characters, and making processing/parsing long files fast.
The built-in Node.js regular expression engine can run in exponential time with a special combination:
This can lead to what is known as a Regular Expression Denial of Service (ReDoS). To tell if your regular expressions are vulnerable, you might try the one of these projects:
However, neither project is perfect.
node-re2 can protect your Node.js application from ReDoS.
node-re2 makes vulnerable regular expression patterns safe by evaluating them in RE2
instead of the built-in Node.js regex engine.
RE2
object can be created just like RegExp
:
Supported properties:
Supported methods:
Starting with 1.6.0 following well-known symbol-based methods are supported (see Symbols):
re2[Symbol.match](str)
re2[Symbol.search](str)
re2[Symbol.replace](str, newSubStr|function)
re2[Symbol.split](str[, limit])
It allows to use RE2
instances on strings directly, just like RegExp
instances:
var re = new RE2("1");
"213".match(re); // [ '1', index: 1, input: '213' ]
"213".search(re); // 1
"213".replace(re, "+"); // 2+3
"213".split(re); // [ '2', '3' ]
RE2
object can be created from a regular expression:
var re1 = new RE2(/ab*/ig); // from a RegExp object
var re2 = new RE2(re1); // from another RE2 object
String
methodsStandard String
defines four more methods that can use regular expressions. RE2
provides them as methods
exchanging positions of a string, and a regular expression:
re2.match(str)
re2.replace(str, newSubStr|function)
re2.search(str)
re2.split(str[, limit])
Starting with 1.6.0, these methods added as well-known symbol-based methods to be used transparently with ES6 string/regex machinery.
Buffer
supportIn order to support Buffer
directly, most methods can accept buffers instead of strings. It speeds up all operations.
Following signatures are supported:
re2.exec(buf)
re2.test(buf)
re2.match(buf)
re2.search(buf)
re2.split(buf[, limit])
re2.replace(buf, replacer)
Differences with their string-based versions:
Buffer
objects, even in composite objects. A buffer can be converted to a string with
buf.toString()
.When re2.replace()
is used with a replacer function, the replacer can return a buffer, or a string. But all arguments
(except for an input object) will be strings, and an offset will be in characters. If you prefer to deal
with buffers and byte offsets in a replacer function, set a property useBuffers
to true
on the function:
function strReplacer(match, offset, input) {
// typeof match == "string"
return "<= " + offset + " characters|";
}
RE2("б").replace("абв", strReplacer);
// "а<= 1 characters|в"
function bufReplacer(match, offset, input) {
// typeof match == "string"
return "<= " + offset + " bytes|";
}
bufReplacer.useBuffers = true;
RE2("б").replace("абв", bufReplacer);
// "а<= 2 bytes|в"
This feature works for string and buffer inputs. If a buffer was used as an input, its output will be returned as a buffer too, otherwise a string will be returned.
Two functions to calculate string sizes between
UTF-8 and
UTF-16 are exposed on RE2
:
RE2.getUtf8Length(str)
— calculates a buffer size in bytes to encode a UTF-16 string as
a UTF-8 buffer.RE2.getUtf16Length(buf)
— calculates a string size in characters to encode a UTF-8 buffer as
a UTF-16 string.JavaScript supports UCS-2 strings with 16-bit characters, while node.js 0.11 supports full UTF-16 as a default string.
Installation:
npm install re2
It is used just like a RegExp
object.
var RE2 = require("re2");
// with default flags
var re = new RE2("a(b*)");
var result = re.exec("abbc");
console.log(result[0]); // "abb"
console.log(result[1]); // "bb"
result = re.exec("aBbC");
console.log(result[0]); // "a"
console.log(result[1]); // ""
// with explicit flags
re = new RE2("a(b*)", "i");
result = re.exec("aBbC");
console.log(result[0]); // "aBb"
console.log(result[1]); // "Bb"
// from regular expression object
var regexp = new RegExp("a(b*)", "i");
re = new RE2(regexp);
result = re.exec("aBbC");
console.log(result[0]); // "aBb"
console.log(result[1]); // "Bb"
// from regular expression literal
re = new RE2(/a(b*)/i);
result = re.exec("aBbC");
console.log(result[0]); // "aBb"
console.log(result[1]); // "Bb"
// from another RE2 object
var rex = new RE2(re);
result = rex.exec("aBbC");
console.log(result[0]); // "aBb"
console.log(result[1]); // "Bb"
// shortcut
result = new RE2("ab*").exec("abba");
// factory
result = RE2("ab*").exec("abba");
RE2
consciously avoids any regular expression features that require worst-case exponential time to evaluate.
These features are essentially those that describe a Context-Free Language (CFL) rather than a Regular Expression,
and are extensions to the traditional regular expression language because some people don't know when enough is enough.
The most noteworthy missing features are backreferences and lookahead assertions.
If your application uses these features, you should continue to use RegExp
.
But since these features are fundamentally vulnerable to
ReDoS,
you should strongly consider replacing them.
RE2
will throw a SyntaxError
if you try to declare a regular expression using these features.
If you are evaluating an externally-provided regular expression, wrap your RE2
declarations in a try-catch block. It allows to use RegExp
, when RE2
misses a feature:
var re = /(a)+(b)*/;
try {
re = new RE2(re);
// use RE2 as a drop-in replacement
} catch (e) {
// suppress an error, and use
// the original RegExp
}
var result = re.exec(sample);
In addition to these missing features, RE2
also behaves somewhat differently from the built-in regular expression engine in corner cases.
RE2
doesn't support backreferences, which are numbered references to previously
matched groups, like so: \1
, \2
, and so on. Example of backrefrences:
/(cat|dog)\1/.test("catcat"); // true
/(cat|dog)\1/.test("dogdog"); // true
/(cat|dog)\1/.test("catdog"); // false
/(cat|dog)\1/.test("dogcat"); // false
RE2
doesn't support lookahead assertions, which are ways to allow a matching dependent on subsequent contents.
/abc(?=def)/; // match abc only if it is followed by def
/abc(?!def)/; // match abc only if it is not followed by def
RE2
and the built-in regex engines disagree a bit.
Before you switch to RE2
, verify that your regular expressions continue to work as expected.
They should do so in the vast majority of cases.
Here is an example of a case where they may not:
var RE2 = require("../re2");
var pattern = '(?:(a)|(b)|(c))+';
var built_in = new RegExp(pattern);
var re2 = new RE2(pattern);
var input = 'abc';
var bi_res = built_in.exec(input);
var re2_res = re2.exec(input);
console.log('bi_res: ' + bi_res); // prints: bi_res: abc,,,c
console.log('re2_res : ' + re2_res); // prints: re2_res : abc,a,b,c
This project uses git submodules, so the correct way to get it is:
git clone git@github.com:uhop/node-re2.git
cd node-re2
git submodule update --init --recursive
In order to build it, make sure that you have all necessary gyp
dependencies
for your platform, then run:
npm install
Or:
yarn
\c
and \u
commands.RegExp
methods, and all relevant String
methods.BSD
FAQs
Bindings for RE2: fast, safe alternative to backtracking regular expression engines.
The npm package @cakoose/re2 receives a total of 0 weekly downloads. As such, @cakoose/re2 popularity was classified as not popular.
We found that @cakoose/re2 demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
Socket’s threat research team has detected six malicious npm packages typosquatting popular libraries to insert SSH backdoors.
Security News
MITRE's 2024 CWE Top 25 highlights critical software vulnerabilities like XSS, SQL Injection, and CSRF, reflecting shifts due to a refined ranking methodology.
Security News
In this segment of the Risky Business podcast, Feross Aboukhadijeh and Patrick Gray discuss the challenges of tracking malware discovered in open source softare.