Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

@finnair/v-validation

Package Overview
Dependencies
Maintainers
0
Versions
42
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@finnair/v-validation

V-validation core package

  • 7.0.0-alpha.8
  • latest
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
1.3K
increased by88.14%
Maintainers
0
Weekly downloads
 
Created
Source

CI codecov npm version

v-validation

V stands for Validation.

V rules define how input is to be converted, normalized and validated to conform to the expected model.

Getting Started

Install v-validation using yarn:

yarn add @finnair/v-validation

Or npm:

npm install @finnair/v-validation

Major Changes Comming in Version 7

New Features

  • Typing: Validators may have a specific input and especially output type.
  • V.objectType() builder can be used to build an ObjectValidator with inferred type.
  • Validator (output/result) type can be acquired with VType<typeof validator>.
  • Direct, chainable support for most used "next" validation rules, e.g. V.number().min(1).max(2):
    • V.string() supports notEmpty, notBlank, pattern and size.
    • V.number() supports min, max and between.
  • Use Validator#validateValue to get valid a valid value or an exception directly

Breaking changes:

  • V.string() and some other validators do not support String object as input any more.
  • isString() function doesn't support String object any more
  • V.number() does not support Number object as input any more.
  • V.allOf() requires that all results match
  • Validators that accept multiple subvalidators (V.optional, V.required, V.check, V.if, V.whenGroup, V.json and ObjectModel#next) are combined using V.compositionOf instead of V.allOf as composition makes more sense in general. However, if there are multiple parents with next validators, those are still combined with V.allOf as they are not aware of each other.
  • V.if does not support "fall through" any more but rejects with NoMatchingCondition if no condition matches. Use .else(V.any()) if "fall through" is desirable.
  • V.whenGroup does not support "fall through" any more but rejects with NoMatchingGroup if no condition matches. Use .otherwise(V.any()) if "fall through" is desirable.
  • More straightforward internal architecture:
    • Internal Validator#validatePath returns now a Promise of valid value or reject of Violation(s) directly instead of ValidationResult
    • Custom SyncPromise is removed in favor of Promise.resolve and reject.
    • ValidatorContext no longer has success, successPromise, failurePromise and promise functions - use Promise.resolve(value) or Promise.reject(new Violation(...)) with single violation or an array of violations.

Show Me the Code!

(await V.toNumber().validate('123')).getValue();
// 123

(await V.date().validate('2020-03-05T09:08:06.397Z')).getValue();
// new Date('2020-03-05T09:08:06.397Z')

(await V.toBoolean().validate('truish')).getValue();
// ValidationError: [             // One or more Violations
//   {
//     "path": "$",               // JSONPath to the invalid value
//     "type": "TypeMismatch",    // Type of the error
//     "invalidValue": "truish",  // Invalid input value
//     "expected": "boolean"      //  Expected type
//   }
// ]

Validators can be chained and combined.

const percentageValidator = V.integer().min(0).max(100));
(await percentageValidator.validate(123)).getValue();
// ValidationError: [
//   {
//     "path": "$",
//     "type": "Max",
//     "invalidValue": 123,
//     "max": 100,
//     "inclusive": true
//   }
// ]

Optional Vmoment (@finnair/v-validation-moment) extension uses custom Moment extensions to support full JSON roundtrip with strict validation.

const dateMoment = (await Vmoment.date().validate('2020-03-05')).getValue();
// moment('2020-03-05', 'YYYY-MM-DD', true)

JSON.stringify(dateMoment);
// "2020-03-05"

Validators are effectively immutable objects/functions that can be combined to form more complex models.

const personValidator = V.object({
  properties: {
    name: V.required(V.string(), V.notBlank()), // Another way of saying V.string().next(V.notBlank())
    dateOfBirth: Vmoment.date(), // Requires a non-null value, a Moment instance or YYYY-MM-DD formatted string
    nickName: V.optional(V.string()),
  },
  additionalProperties: false,
});

(await personValidator.validate({ name: 'John Doe', extraProperty: 'foo' })).getValue();
// ValidationError: [
//   {
//     "path": "$.dateOfBirth",
//     "type": "NotNull"
//   },
//   {
//     "path": "$.extraProperty",
//     "type": "UnknownProperty"
//   }
// ]

Custom converters can be defined as a simple map functions.

const base64json = V.map(value => JSON.parse(new Buffer(value, 'base64').toString()), 'InvalidEncoding');
(await base64json.validate('eyAibWVzc2FnZSI6ICJIZWxsbyBXb3JsZCEiIH0=')).getValue();
// { message: 'Hello World!' }

(await base64json.validate('eyBtZXNzYWdlOiBIZWxsbyBXb3JsZCEgfQ==')).getValue(); // Invalid JSON throws an exception
// ValidationError: [
//   {
//     "path": "$",
//     "type": "Error",
//     "error": "InvalidEncoding"
//   }
// ]

Even complex custom validators can be implemented as simple anonymous functions.

// 1) VALIDATION RULES
// A custom validator to check that password1 === password2 with failures targeted at password2 field

// Use V.objectType() to build typed ObjectValidator. The inferred type is accesseible with Vtype<typeof UserRegistrationValidator>
const UserRegistrationValidator = V.objectType()
  .properties({
    password1: V.string().next(V.pattern(/[A-Z]/), V.pattern(/[a-z]/), V.pattern(/[0-9]/), V.size(8, 32)),
    password2: V.string(),
  })
  .next(V.fn(async (value, path: Path, ctx: ValidationContext) => {
    if (value.password1 !== value.password2) {
      return Promise.reject(new Violation(path.property('password2'), 'PasswordsMustMatch'));
    }
    return Promise.resolve(value);
  }))
  .build();

// 2) Derived type
type UserRegistration = VType<typeof UserRegistrationValidator>;

// 3) INPUT VALIDATION
// Valid object
(await UserRegistrationValidator.validate({ password1: 'foo', password2: 'foo' })).getValue() satisfies UserRegistration;

(await UserRegistrationValidator.validate({ password1: 'FooBar' })).getValue();
// ValidationError: ValidationError: [
//   {
//     "path": "$.password2",
//     "type": "NotNull"
//   },
//   {
//     "path": "$.password1",
//     "type": "Pattern",
//     "invalidValue": "FooBar",
//     "pattern": "/[0-9]/"
//   },
//   {
//     "path": "$.password1",
//     "type": "Size",
//     "min": 8,
//     "max": 32
//   }

(await UserRegistrationValidator.validate({ password1: 'FooBar0_', password2: 'Foobar0_' })).getValue();
// ValidationError: [
//   {
//     "path": "$.password2",
//     "type": "PasswordsMustMatch"
//   }
// ]

Vhy?

  • Machine readable error reports
    • V's Violation is easily readable to any developer and can be used to localize and target human readable error messages in the UI
    • Errors serialize to JSON nicely for easy interoperability
  • Asynchronous processing allows I/O based validators
    • E.g. check if a code or an ID exists
    • Basic validators are internally synchronous for better performance
  • Fluent syntax
  • Composability
  • Supports object oriented inheritance and polymorphism where as
  • Effortless custom extension
    • All non-trivial use cases require some custom validation logic
    • Custom validators can be defined as simple functions
    • No need to register custom validators
  • All the validators are effectively immutable
  • Supports recursive types/validators (e.g. linked list)
  • Supports cyclic data: allow or disallow by configuration
  • TypeScript native implementation
  • Supports type inference that can be mixed with better readable custom types/interfaces

Pure Validation?

As a matter of principle, V doesn't modify the value being validated. All conversions and normalizations return a new object or array. For pure validation,

  1. check if validationResult.isSuccess() === true and use the original value or
  2. wrap validation rules with V.check(...).

Conversions are always applied internally as in validation rule combinations latter rules may depend on conversions applied earlier. E.g. checking if a date is in future relies on the value actually being a Date.

Validator Chaining

All validators can be chained using Validator.next(...compositionOf: Validator[]) function. Next-validators are only run for successful results with the converted value. Often occurring pattern is to first verify/convert the type and then run the rest of the validations, e.g. validating a prime number between 1 and 1000:

V.toInteger().next(V.min(1), V.max(1000), V.assertTrue(isPrime));

Validator Chaining in Version >= 7

Version 7 offers shortcuts for most common validator chaining cases:

V.integer()
  .min(1)
  .max(1000)
  .between(1, 1000);

V.string()
  .notEmpty()
  .notBlank()
  .pattern(/.+/)
  .size(1, 10)

Typing in Version >= 7

All built-in validators have input and output types. Typed ObjectValidators can be built with V.objectType(). Since inferred types tend to get quite long and hard to read, you can also combine them with hand-written types.

Validator Type

Use VType<typeof validator> to get the result type of validator.

Use VInheritableType<typeof objectValidator> to get the inheritable type of objectValidator: ObjectValidator<LocalType, Inheritabletype>`.

Type Guards

When using custom interfaces it's good to verify that the validator is in sync with the interface. The challenge is that TypeScript's generic extends only verifies type-compatibility and optional properties do not count unless they are of conflicting type. For type/validator compatibility we need to also consider optional properties and nested structure. For this there are a couple of helper types:

  1. ComparableType<T> converts all optional properties to mandatory Optional<T> recursively.
  2. EqualTypes<A, B> verifies that A extends B and B extends A and resolves to true if there's no error.

These can be used with assertType to verify type equality:

interface MyInterface{
  //...
}
const myInterfaceValidator = V.objectType()
  .properties({
    //...
  })
  .build();

// Use assertType function with EqualTypes and ComparableType to verify that myInterfaceValidator type is equal to MyInterface
assertType<EqualTypes<ComparableType<VType<typeof myInterfaceValidator>>, ComparableType<MyInterface>>>(true);

Why assertType? EqualTypes can also be used directly, but it needs to be tied to something (e.g. type verified = Equaltypes<...>), but that something may then cause "is declared but never used" -error.

Combining Validators

V supports

  • All validators have Validator.next function to chain validator rules,.
  • compositionOf - validators are run one after another against the (current) converted value (a shortcut for Validator.next)
  • allOf - value must satisfy all the validators
    • validators are run in parallel and the results are combined
    • all the validators must return the same value (deepEquals)
  • anyOf - at least one of the validators must match
  • oneOf - exactly one validator must match while others should return false

V.object

V.object allows defining hierarchical object models (see Schema about polymorphism). ObjectModel consists of

  1. named properties as references to other validators,
  2. rules defining what, if any, additional (unnamed) properties are allowed,
  3. references to parent model(s),
  4. local (non-inheritable) properties and
  5. next validator for cross-property rules
  6. local next for non-inheritable mapping

Named Properties

An object may have any named property defined in a parent properties, it's own properties or localProperties, which in turn are not inherited.

A child model may extend the validation rules of any inherited properties. In such a case inherited property validators are executed first and, if success, the converted value is validated against child's property validators. A child may only further restrict parent's property rules.

  const vehicle = V.objectType()
  .properties({
    wheelCount: V.required(V.toInteger(), V.min(0)),
    ownerName: V.optionalStrict(V.string()),
  })
  .localProperties({
    // This rule is not inherited! "as const" for 'Vehicle' instead of string type
    type: V.hasValue('Vehicle' as const), 
  })
  .build();
  
  const bike = V.objectType()
  .extends(vehicle)
  .properties({
    wheelCount: V.allOf(V.min(1), V.max(3)), // Extend parent rules
    sideBags: V.boolean(), // Add a property
  })
  .localProperties({
    type: V.hasValue<'Bike'>('Bike'), // Another way of enforcing literal type
  })
  .build();
  
  const abike1 = { type: 'Bike', wheelCount: 2, sideBags: false } satisfies VType<typeof bike>;  
  (await bike.validate(abike1)).isSuccess();
  // true
 
  const abike2 = { type: 'Bike', wheelCount: 4, sideBags: false } satisfies VType<typeof bike>;
  (await bike.validate(abike2)).getValue();
  // ValidationError: [
  //   {
  //     "path": "$.wheelCount",
  //     "type": "Max",
  //     "invalidValue": 4,
  //     "max": 3,
  //     "inclusive": true
  //   }
  // ]
  
  (await vehicle.validate(abike1)).getValue();
  // ValidationError: [
  //   {
  //     "path": "$.type",
  //     "type": "HasValue",
  //     "invalidValue": "Bike",
  //     "expectedValue": "Vehicle"
  //   },
  //   {
  //     "path": "$.sideBags",
  //     "type": "UnknownProperty"
  //   }
  // ]

Optional Properties

Most validation rules require a non-null and non-undefined value. Optional properties need to be defined with V.optional:

V.optional(V.integer());

Additional Properties

Additional properties can be allowed or disallowed in general or by key pattern(s). Again a child model may further restrict parent's rules.

enum SeatClass {
  BUSINESS = 'BUSINESS',
  ECONOMY = 'ECONOMY',
}
const aircraft = V.object({
  extends: vehicle,
  properties: {
    seatsByClass: V.object({
      additionalProperties: {
        keys: V.enum(SeatClass, 'SeatClass'),
        values: V.integer(),
      },
    }),
  },
});

(await aircraft.validate({ wheelCount: 3, seatsByClass: { BUSINESS: 10, ECONOMY: 100 } })).isSuccess();
// true

This kind of use case where an object holds a mapping from identifiers (like enum) to values is so common that there's even a shortcut for it: V.properties.

Note that V.object may explicitly deny additional properties from it's submodels by setting additionalProperties: false, but this cannot block submodels from adding their own named properties. Objects may have zero or more additional property validators which are invoked for all non-named properties.

All additional-property-validators consist of two parts, key and value validator. For a non-named property there must be at least one additional-property-validator returning success for the key. The value validator is only run if the key validator is successful. Setting additionalProperties: true is simply a shortcut for a case where both key and value validators allow anything; and additionalProperties: false is a shortcut for any key and a value validator that always returns UnknownPropertyDenied error.

Next

An object may define inheritable cross-property rules with ObjectModel.next and non-inheritable validations or, e.g. mappings to corresponding a classes, using localNext. As localProperties, localNext is not inherited by extending validators.

Next validation rules are run after all the properties are validated successfully and localNext is the last step in the validation chain. Inherited next rules are executed before child's own.

Arrays

Arrays are defined in terms of their element type:

V.array(V.integer()).next(V.size(1, 100)); // An integer array of size 1 to 100

Note that basic validators do not handle polymoprhism even though they support inheritance. For example this definition would not validate elements against bike or aircraft:

V.array(vehicle);

Schema

Polymorphims requires that objects are somehow tagged with a type used to validate it. Since plain JSON/JavaScript objects do not have type information attached to them one needs a discriminator property or a function to infer object's type. This type is then used to actually validate the object.

Polymorphic schemas are recursive in nature: 1) a child needs to know it's parents so that it may extend them and 2) unless the type information is natively bound to the object being validated, the parent needs to know it's children so that it may dispatch the validation to the correct child. As (direct) cyclic references are not possible, SchemaValidator is created with a callback function that supports referencing other models within the schema by name even before they are defined:

  1. An object may extend other models by simply referencing them by name.
  2. Object properties can refer named models via SchemaValidator.of('ModelName').
const validatorType: ObjectValidator = V.object({
  properties: {
    type: V.string(),
  },
});
const schema = V.schema((schema: SchemaValidator) => ({
  discriminator: 'type', // or (value: any) => string function
  models: {
    Object: {
      extends: 'Validator', // Allows referencing parents by name before they are actually defined
      properties: {
        extends: V.optional(schema.of('Object')), // Allows referencing validators by name before they are actually defined
        properties: V.optional(V.properties(V.string(), schema.of('Validator'))),
      },
    },
    ObjectNormalizer: {
      extends: 'Object',
      properties: {
        property: V.string(),
      },
    },
    Array: {
      extends: validatorType, // Allows direct inheritance
      properties: {
        items: schema.of('Validator'),
      },
    },
    Number: {
      extends: 'Validator',
    },
    Validator: validatorType, // Allows combining existing validators
  },
}));

// SchemaValidator is a Validator like any other
(await schema.validate({ type: 'ObjectNormalizer', property: 'value' })).isSuccess();
// true
(await schema.validate({ type: 'Object', property: 'value' })).isSuccess();
// false

// Validate specific subclass
(await schema.of('Object').validate({ type: 'ObjectNormalizer', property: 'value' })).isSuccess();
// true

// While Object is a subclass of Validator, it's not subclas of Number
(await schema.of('Number').validate({ type: 'Object' })).isSuccess();
// false

// Access raw Validator - Object validator doesn't know about ObjectNormalizer properties
(await schema.raw('Object').validate({ type: 'ObjectNormalizer', property: 'value' })).isSuccess();
// false

// Property based discriminator is validated as local property (i.e. not inherited)
(await schema.raw('Object').validate({ type: 'Object' })).isSuccess();
// true
(await schema.raw('Object').validate({ type: 'ObjectNormalizer' })).isSuccess();
// false

Recursive Models

Recursive model has a cyclic reference to itself. While a model cannot reference itself before it's declared, we can wrap the call within a validator function. Type inference also cannot infer type from itself so we need to define the target interface separately.

interface RecursiveModel {
  first: string;
  next?: RecursiveModel;
}

// Typed placeholder for the recursive validator
let recursion: ObjectValidator<RecursiveModel, RecursiveModel>;
const validator = V.objectType()
  .properties({
    first: V.string(),
    next: V.optionalStrict(V.fn((value: any, path: Path, ctx: ValidationContext) => recursion.validatePath(value, path, ctx))),
  })
  .build();
recursion = validator;

// Verify that validator matches RecursiveModel
assertType<EqualTypes<ComparableType<VType<typeof validator>>, ComparableType<RecursiveModel>>>(true);

Another option is to use V.schema.

Cyclic Data

By default V returns an error if same object is referenced multiple times in the input data structure. While plain data cannot contain duplicates, as they require references, V allows these and even cyclic data by setting ValidatorOptions.allowCycles = true. The converted object returned by successful validation retains identical reference structure compared to the original.

Map

V supports JavaScript Maps with a custom extension for JSON serialization.

const keys = V.string();
const values = V.any();
const myMap = V.toMapType(keys, values); // keyValidator, valueValidator, jsonSafeMap?
const map = (
  await myMap.validate([
    ['key1', 'value1'],
    ['key2', 'value2'],
  ])
).getValue() as Map;

JSON.stringify(map);
// [["key1", "value1"], ["key2", "value2"]]

// Or without array conversion and JSON support:
V.mapType(keys, values, false);

Validator Options

V supports contextual validation options which can be used to guide validation. Options are passed to to validate function as optional second argument.

OptionDescription
ignoreUnknownProperties?: booleanUnknown properties allowed by default.*
ignoreUnknownEnumValues?: booleanUnknown enum values allowed by default
warnLogger?: WarnLoggerA reporter function for ignored Violations
group?: GroupA group used to activate validation rules
allowCycles?: booleanMultiple references to same object allowed

*) Note that this option has no effect in cases where additional properties are explicitly denied.

(await V.object({}).validate({ additionalProperty: 'OK' }, { ignoreUnknownProperties: true })).isSuccess();
// true

(await V.object({ additionalProperties: false }).validate({ additionalProperty: 'Not OK' }, { ignoreUnknownProperties: true })).isSuccess();
// false

Custom Validators

There are four main ways of defining custom validators

// 1) Any function accepting any value and returning a boolean:
V.assertTrue(...)


// 2) Any function accepting any value and returning value on success or throwing an error on failure:
V.map(...)


// 3) If a validator doesn't have any parameters, but needs access to path and context,
// it can be defined as a simple anonymous function
V.fn((value: any, path: Path, ctx: ValidationContext): PromiseLike<ValidationResult> => {
  // return either successful or rejected Promise or throw an error
})


// 4) Full parametrizable validators extend Validator
class MyValidator extends Validator {
  // Validators should be immutable
  constructor(public readonly myParameter: any) {
    super();
  }
  async validatePath(value: any, path: Path, ctx: ValidationContext) {
    if (isOK(value)) {
      return Promise.resolve(value);
    } else {
      return Promise.reject(new MyViolation(path, myParameter, value));
    }
  }
}
// Custom Violations may be used to convey additional parameters required for reporting the error
class MyViolation extends Violation {
  // Violations should be immutable
  constructor(path: Path, public readonly myParameter: any, invalidValue?: any) {
    super(path, 'MyError', invalidValue);
  }
}

Built-In Validators

Unless otherwise stated, all validators require non-null and non-undefined values.

V.ArgumentsDescription
fnfn: ValidatorFn, type?: stringFunction reference as a validator. A short cut for extending Validator class.
ignoreConverts any input value to undefined.
anyAccepts any value, including undefined and null.
mapfn: MappingFn, error?: anyMapping function to convert a value. Catches and converts errors to Violations
compositionOf...validators: Validator[]Runs given the validators one after another, chaining the result.
check...validators: Validator[]Runs all the validators as compositionOf and, if successful, returns the original value discarding any conversions.
required...validators: Validator[]A non-null and non-undefined valid compositionOf of validators.
optional...validators: Validator[]Null, undefined or valid compositionOf validators.
optionalStrict...validators: Validator[]Undefined or valid compositionOf validators.
nullable...validators: Validator[]Null or valid compositionOf validators.
stringRequires string or String.
toStringConverts primitive values to (primitive) strings.
notNullRequires non-null and non-undefined value.
nullOrUndefinedRequires null or undefined value.
notEmptyRequires non-null, non-undefined and not empty. Works with anything having numeric length property, e.g. string or array.
notBlankRequires non-null, non-undefined and not blank (whitespace only string) values.
uuidversion?: numberUses uuid package to validate input.
patternpattern: string | RegExp, flags?: stringTests input against the pattern.
toPatternCombines toString normalization with pattern validator.
booleanRequires that input is primitive boolean.
toBooleantruePattern?: RegExp, falsePattern?: RegExpConverts strings and numbers to boolean. Patterns for true and false can be configured using regexp, defaults to true and false.
numberRequires that input is either primitive number or Number and not NaN.
toNumberConverts numeric strings to numbers.
integerRequires that input is integer.
toIntegerConverts numeric strings to integers.
minmin: number, inclusive = trueAsserts that numeric input is greater than or equal (if inclusive = true) than min.
maxmax: number, inclusive = trueAsserts that numeric input is less than or equal (if inclusive = true) than max.
dateReqruires a valid date. Converts string to Date.
enumenumType: object, name: stringRequires that the input is one of given enumType. Name of the enum provided for error message.
assertTruefn: AssertTrue, type: string = 'AssertTrue', path?: PathRequires that the input passes fn. Type can be provided for error messages and path to target a sub property
hasValueexpectedValue: anyRequires that the input matches expectedValue. Uses node-deep-equal library.
objectmodel: ModelDefines an Object validator based on provided Model.
toObjectproperty: stringConverts a primitive value to object { property: 'value' }. Undefined is passed on as such.
schemacallback: (schema: SchemaValidator) => SchemaModelDefines a SchemaValidator for a discriminator and models.
propertieskeys: Validator, values: ValidatorA shortcut for object with additionalProperties. Type: Record<Keys, Values>
optionalPropertieskeys: Validator, values: ValidatorA shortcut for object with additionalProperties. Type: Partial<Record<Keys, Values>>
mapTypekeys: Validator, values: Validator, jsonSafeMap: boolean = trueMap validator
toMapType(keys, values)keys: Validator, values: ValidatorConverts an array-of-arrays representation of a Map into a JsonSafeMap instance.
array...items: Validator[]Array validator
toArrayitems: ValidatorConverts undefined to an empty array and non-arrays to single-valued arrays.
sizemin: number, max: numberAsserts that input's numeric length property is between min and max (both inclusive).
allOf...validators: Validator[]Requires that all given validators match. Validators are run in parallel and must provide the same output.
anyOf...validators: Validator[]Requires minimum one of given validators matches. Validators are run in parallel and in case of failure, all violations will be returned.
oneOf...validators: Validator[]Requires that exactly one of the given validators match.
emptyToUndefinedConverts null or empty string to undefined. Does not touch any other values.
emptyToNullConverts undefined or empty string to null. Does not touch any other values.
emptyTodefaultValue: stringUses given defaultValue in place of null, undefined or empty string. Does not touch any other values.
nullTodefaultValue: stringUses given defaultValue in place of null. Does not touch any other values.
undefinedToNullConvets undefined to null. Does not touch any other values.
if...elseif...elsefn: AssertTrue, ...validators: Validator[]Configures validators (compositionOf) to be executed for cases where if/elseif AssertTrue fn returns true.
whenGroup...otherwisegroup: GroupOrName, ...validators: Validator[]Defines validation rules (compositionOf) to be executed for given ValidatorOptions.group.
json...validators: Validator[]Parse JSON input and validate it against given validators.

Violations

All Violations have following propertie in common:

PropertyDescription
path: PathPath is a wrapper for JSONPaths denoting violating element.
type: stringType of error, e.g. NotNull.
invalidValue?: anyThe violating value. This is only used for primitive values. Note: This may not be the original value. In case of validator chaining it's the (converted) value passed on by the previous validator.

Violation class can be directly used to report any violation that doesn't require extra parameters.

Built-in Violations

ClassTypePropertiesDescription
TypeMismatchTypeMismatchexpected: stringType mismatch: expected is a description of expected type.
EnumMismatchEnumMismatchenumType: stringInvalid enum value: enumType is the name of the expected enumeration.
ErrorViolationErrorerror: anyAn unspecified Error that was thrown and caught.
HasValueViolationHasValueexpectedValue: anyInput does not match (deepEqual) expectedValue.
PatternViolationiPatternpattern: stringInput does not match the regular expression (pattern).
OneOfMismatchOneOfmatches: numberInput matches 0 or >= 2 of the configured validators.
MaxViolationMaxmax: number, inclusive: booleanInput is greater-than or greater-than-or-equal, if inclusive=true, than max.
MinViolationMinmin: number, inclusive: booleanInput is less-than or less-than-or-equal if inclusive=true than min.
SizeViolationSizemin: number, max: numberInput length (required numeric property) is less-than min or grater-than max.
ViolationNotNullInput is null or undefined.
ViolationNotEmptyInput is null, undefined or empty (i.e. input.length === 0).
ViolationNotBlankInput (string) is null, undefined or empty when trimmed.
ViolationUnknownPropertyAdditional property that is denied by default (see ignoreUnknownProperties).
ViolationUnknownPropertyDeniedExplicitly denied additional property.
DiscriminatorViolationDiscriminatorexpectedOneOf: string[]Invalid discriminator value: expectedOneOf is a list of known types.

Roadmap

Before 1.0 Release

  • Remove jsonpath dependency as it doesn't work with webpack
  • Detect cyclic input
  • Use in real-life project. While V was originally built as a part of a critical large-scale real-life project, this library isn't an exact copy of that...
  • Add JSDoc

Later

  • TypeScript type inference from V rules?
  • OpenAPI documentation generation from V rules?

Keywords

FAQs

Package last updated on 21 Nov 2024

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc