🤗 Hugging Face Inference API
A Typescript powered wrapper for the Hugging Face Inference API. Learn more about the Inference API at Hugging Face.
Check out the full documentation or try out a live interactive notebook.
Install
npm install @huggingface/inference
yarn add @huggingface/inference
pnpm add @huggingface/inference
Usage
❗Important note: Using an API key is optional to get started, however you will be rate limited eventually. Join Hugging Face and then visit access tokens to generate your API key for free.
Your API key should be kept private. If you need to protect it in front-end applications, we suggest setting up a proxy server that stores the API key.
Basic examples
import { HfInference } from '@huggingface/inference'
const hf = new HfInference('your api key')
await hf.fillMask({
model: 'bert-base-uncased',
inputs: '[MASK] world!'
})
await hf.summarization({
model: 'facebook/bart-large-cnn',
inputs:
'The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930.',
parameters: {
max_length: 100
}
})
await hf.questionAnswer({
model: 'deepset/roberta-base-squad2',
inputs: {
question: 'What is the capital of France?',
context: 'The capital of France is Paris.'
}
})
await hf.tableQuestionAnswer({
model: 'google/tapas-base-finetuned-wtq',
inputs: {
query: 'How many stars does the transformers repository have?',
table: {
Repository: ['Transformers', 'Datasets', 'Tokenizers'],
Stars: ['36542', '4512', '3934'],
Contributors: ['651', '77', '34'],
'Programming language': ['Python', 'Python', 'Rust, Python and NodeJS']
}
}
})
await hf.textClassification({
model: 'distilbert-base-uncased-finetuned-sst-2-english',
inputs: 'I like you. I love you.'
})
await hf.textGeneration({
model: 'gpt2',
inputs: 'The answer to the universe is'
})
await hf.tokenClassification({
model: 'dbmdz/bert-large-cased-finetuned-conll03-english',
inputs: 'My name is Sarah Jessica Parker but you can call me Jessica'
})
await hf.translation({
model: 't5-base',
inputs: 'My name is Wolfgang and I live in Berlin'
})
await hf.zeroShotClassification({
model: 'facebook/bart-large-mnli',
inputs: [
'Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!'
],
parameters: { candidate_labels: ['refund', 'legal', 'faq'] }
})
await hf.conversational({
model: 'microsoft/DialoGPT-large',
inputs: {
past_user_inputs: ['Which movie is the best ?'],
generated_responses: ['It is Die Hard for sure.'],
text: 'Can you explain why ?'
}
})
await hf.featureExtraction({
model: 'sentence-transformers/paraphrase-xlm-r-multilingual-v1',
inputs: {
source_sentence: 'That is a happy person',
sentences: [
'That is a happy dog',
'That is a very happy person',
'Today is a sunny day'
]
}
})
await hf.automaticSpeechRecognition({
model: 'facebook/wav2vec2-large-960h-lv60-self',
data: readFileSync('test/sample1.flac')
})
await hf.audioClassification({
model: 'superb/hubert-large-superb-er',
data: readFileSync('test/sample1.flac')
})
await hf.imageClassification({
data: readFileSync('test/cheetah.png'),
model: 'google/vit-base-patch16-224'
})
await hf.objectDetection({
data: readFileSync('test/cats.png'),
model: 'facebook/detr-resnet-50'
})
await hf.imageSegmentation({
data: readFileSync('test/cats.png'),
model: 'facebook/detr-resnet-50-panoptic'
})
await hf.textToImage({
inputs: 'award winning high resolution photo of a giant tortoise/((ladybird)) hybrid, [trending on artstation]',
negative_prompt: 'blurry',
model: 'stabilityai/stable-diffusion-2',
})
Supported Tasks
Natural Language Processing
Audio
Computer Vision
Running tests
HF_ACCESS_TOKEN="your access token" npm run test
Finding appropriate models
We have an informative documentation project called Tasks to list available models for each task and explain how each task works in detail.
It also contains demos, example outputs, and other resources should you want to dig deeper into the ML side of things.