Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

@jharrilim/sentiment

Package Overview
Dependencies
Maintainers
1
Versions
1
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@jharrilim/sentiment

AFINN-based sentiment analysis for Node.js

  • 6.0.0
  • latest
  • Source
  • npm
  • Socket score

Version published
Maintainers
1
Created
Source

sentiment

AFINN-based sentiment analysis for Node.js

CircleCI Greenkeeper badge

Sentiment is a Node.js module that uses the AFINN-165 wordlist and Emoji Sentiment Ranking to perform sentiment analysis on arbitrary blocks of input text. Sentiment provides several things:

  • Performance (see benchmarks below)
  • The ability to append and overwrite word / value pairs from the AFINN wordlist
  • The ability to easily add support for new languages
  • The ability to easily define custom strategies for negation, emphasis, etc. on a per-language basis

Table of contents

Installation

npm install @jharrilim/sentiment

Usage example

Javascript:

const Sentiment = require('sentiment');
const sentiment = new Sentiment();
const result = sentiment.analyze('Cats are stupid.');
console.table(result);    // Score: -2, Comparative: -0.666

Typescript:

import { Sentiment } from 'sentiment';
const sentiment = new Sentiment();
const result = sentiment.analyze('Cats are stupid.');
console.table(result);    // Score: -2, Comparative: -0.666

Adding new languages

You can add support for a new language by registering it using the registerLanguage method:

Javascript:

const Sentiment = require('sentiment');
const sentiment = new Sentiment(); 

const frLanguage = {
  labels: { 'stupide': -2 }
};
sentiment.registerLanguage('fr', frLanguage);

const result = sentiment.analyze('Le chat est stupide.', { languageCode: 'fr' });
console.dir(result);    // Score: -2, Comparative: -0.5

Typescript:

import { Sentiment, LanguageInput } from 'sentiment';

const sentiment = new Sentiment();
const frLanguage: LangaugeInput = {
  labels: { 'stupide': -2 }
};
sentiment.registerLanguage('fr', frLanguage);

const result = sentiment.analyze('Le chat est stupide.', { languageCode: 'fr' });
console.dir(result);    // Score: -2, Comparative: -0.5

You can also define custom scoring strategies to handle things like negation and emphasis on a per-language basis:

Javascript:

const Sentiment = require('sentiment');
const sentiment = new Sentiment();

const frLanguage = {
  labels: { 'stupide': -2 },
  scoringStrategy: function(tokens, cursor, tokenScore) {
    if (cursor > 0) {
      const prevtoken = tokens[cursor - 1];
      if (prevtoken === 'pas') {
        tokenScore = -tokenScore;
      }
    }
    return tokenScore;
  }
};
sentiment.registerLanguage('fr', frLanguage);

const result = sentiment.analyze('Le chat n\'est pas stupide', { language: 'fr' });
console.dir(result);    // Score: 2, Comparative: 0.4

Typescript:

import { Sentiment, LanguageInput } from 'sentiment';

const frLanguage: LanguageInput = {
  labels: { 'stupide': -2 },
  scoringStrategy: (tokens, cursor, tokenScore) => {
    if (cursor > 0) {
      const prevtoken = tokens[cursor - 1];
      if (prevtoken === 'pas') {
        tokenScore = -tokenScore;
      }
    }
    return tokenScore;
  }
};

const sentiment = new Sentiment();

sentiment.registerLanguage('fr', frLanguage);

const result = sentiment.analyze('Le chat n\'est pas stupide', { language: 'fr' });
console.dir(result);    // Score: 2, Comparative: 0.4

Adding and overwriting words

You can append and/or overwrite values from AFINN by simply injecting key/value pairs into a sentiment method call:

Javascript:

const Sentiment = require('sentiment');
const sentiment = new Sentiment();

const options = {
  extras: {
    cats: 5,
    amazing: 2
  }
};
const result = sentiment.analyze('Cats are totally amazing!', options);
console.dir(result);    // Score: 7, Comparative: 1.75

Typescript:

import { Sentiment, AnalyzeOptions } from 'sentiment';

const options: AnalyzeOptions = {
  extras: {
    cats: 5,
    amazing: 2
  }
};

const result = sentiment.analyze('Cats are totally amazing!', options);
console.dir(result);    // Score: 7, Comparative: 1.75

API Reference

sentiment.analyze(phrase, [options], [callback])
ArgumentTypeRequiredDescription
phrasestringtrueInput phrase to analyze
optionsAnalyzeOptionsfalseAnalyzeOptions (see below)

AnalyzeOptions
PropertyTypeDefaultDescription
languageCodestring'en'Language to use for sentiment analysis
extrasobject{}Set of labels and their associated values to add or overwrite

sentiment.registerLanguage(languageCode, language)
ArgumentTypeRequiredDescription
languageCodestringtrueInternational two-digit code for the language to add
languageLanguageInputtrueLanguage module (see Adding new languages)

Language
PropertyTypeDefaultDescription
labels{[word: string]: number}'en'Set of labels and their associated values
scoringStrategyScoringStrategydefaultScoringStrategyA function used to calculate the score for a word. The default function simply returns the tokenScore.

ScoringStrategy
ArgumentTypeDescription
tokensstring[]A list of tokens used for analysis
cursornumberAn index that points to the current word in tokens
tokenScorenumberThe score of the current word
ReturnsDescription
numberA numeric value representing the score of a word

How it works

AFINN

AFINN is a list of words rated for valence with an integer between minus five (negative) and plus five (positive). Sentiment analysis is performed by cross-checking the string tokens(words, emojis) with the AFINN list and getting their respective scores. The comparative score is simply: sum of each token / number of tokens. So for example let's take the following:

I love cats, but I am allergic to them.

That string results in the following:

{
    score: 1,
    comparative: 0.1111111111111111,
    tokens: [
        'i',
        'love',
        'cats',
        'but',
        'i',
        'am',
        'allergic',
        'to',
        'them'
    ],
    words: [
        'allergic',
        'love'
    ],
    positive: [
        'love'
    ],
    negative: [
        'allergic'
    ]
}
  • Returned Objects
    • Score: Score calculated by adding the sentiment values of recongnized words.
    • Comparative: Comparative score of the input string.
    • Token: All the tokens like words or emojis found in the input string.
    • Words: List of words from input string that were found in AFINN list.
    • Positive: List of postive words in input string that were found in AFINN list.
    • Negative: List of negative words in input string that were found in AFINN list.

In this case, love has a value of 3, allergic has a value of -2, and the remaining tokens are neutral with a value of 0. Because the string has 9 tokens the resulting comparative score looks like: (3 + -2) / 9 = 0.111111111

This approach leaves you with a mid-point of 0 and the upper and lower bounds are constrained to positive and negative 5 respectively (the same as each token! 😸). For example, let's imagine an incredibly "positive" string with 200 tokens and where each token has an AFINN score of 5. Our resulting comparative score would look like this:

(max positive score * number of tokens) / number of tokens
(5 * 200) / 200 = 5

Tokenization

Tokenization works by splitting the lines of input string, then removing the special characters, and finally splitting it using spaces. This is used to get list of words in the string.


Benchmarks

A primary motivation for designing sentiment was performance. As such, it includes a benchmark script within the test directory that compares it against the Sentimental module which provides a nearly equivalent interface and approach. Based on these benchmarks using Node v11.10.1, sentiment is nearly twice as fast as alternative implementations.

Bench specs:

  • i5-8400 @ 2.80GHz 6 core
  • 16 GB (8GB x 2) RAM DDR4 2666 MT/s
  • WD Blue 3D NAND SSD - SATA III 6 Gb/s M.2
sentiment (Latest)  - Short: x 979,943 ops/sec ±2.01% (90 runs sampled)
sentiment (Latest)  - Long : x 4,370 ops/sec ±1.04% (90 runs sampled)

Sentimental (1.0.1) - Short: x 573,312 ops/sec ±1.17% (90 runs sampled)
Sentimental (1.0.1) - Long : x 2,143 ops/sec ±0.37% (92 runs sampled)

To run the benchmarks yourself:

npm run test:benchmark

Validation

While the accuracy provided by AFINN is quite good considering it's computational performance (see above) there is always room for improvement. Therefore the sentiment module is open to accepting PRs which modify or amend the AFINN / Emoji datasets or implementation given that they improve accuracy and maintain similar performance characteristics. In order to establish this, we test the sentiment module against three labelled datasets provided by UCI.

To run the validation tests yourself:

npm run test:validate

Rand Accuracy (AFINN Only)

Amazon:  0.70
IMDB:    0.76
Yelp:    0.67

Rand Accuracy (AFINN + Additions)

Amazon:  0.72 (+2%)
IMDB:    0.76 (+0%)
Yelp:    0.69 (+2%)

Testing

npm test

Keywords

FAQs

Package last updated on 28 Jun 2019

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc