Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

@magenta/image

Package Overview
Dependencies
Maintainers
6
Versions
5
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@magenta/image

Visual art with machine learning, in the browser.

  • 0.2.1
  • latest
  • Source
  • npm
  • Socket score

Version published
Maintainers
6
Created
Source

@magenta/image

This JavaScript implementation of Magenta's image models uses TensorFlow.js for GPU-accelerated inference.

Complete documentation is available at https://tensorflow.github.io/magenta-js/image.

Contents

Example Applications

You can try our hosted demos for each model and have a look at the demo code.

Supported Models

Fast Arbitrary Image Stylization

Implements Ghiasi et al.'s fast arbitrary style transfer model (paper, code). Wraps around Reiichiro Nakano's TensorFlow.js port of the model checkpoint.

Getting started

There are two main ways to get MagentaImage.js in your JavaScript project: via script tags or by installing it from NPM and using a build tool like yarn.

via Script Tag

Add the following code to an HTML file, and place a content (content.jpg) and style (style.jpg) image in the same directory:

<html>
  <head>
    <!-- Load @magenta/image -->
    <script src="https://cdn.jsdelivr.net/npm/@magenta/image@^0.1.2"></script>
  </head>
  <body>
    <img id="content" height="256" src="content.jpg"/>
    <img id="style" height="256" src="style.jpg"/>
    <canvas id="stylized" height="256"></canvas>
      <script>
        const model = new mi.ArbitraryStyleTransferNetwork();
        const contentImg = document.getElementById('content');
        const styleImg = document.getElementById('style');
        const stylizedCanvas = document.getElementById('stylized');

        function stylize() {
          model.stylize(contentImg, styleImg).then((imageData) => {
            stylizedCanvas.getContext('2d').putImageData(imageData, 0, 0);
          });
        }

        model.initialize().then(stylize);
      </script>
  </body>
</html>

Launch a simple HTTP server (e.g. python3 -m http.server) and point your browser to http://0.0.0.0:8000/. You should see your content and style images displayed and, after a few seconds, the stylized output.

via NPM

Add MagentaImage.js to your project using yarn or npm. For example, with yarn you can simply call yarn add @magenta/image.

Then, you can use the library in your own code as in the following example:

import * as mi from '@magenta/image';

const model = new mi.ArbitraryStyleTransferNetwork();
const contentImg = document.getElementById('content') as HTMLImageElement;
const styleImg = document.getElementById('style') as HTMLImageElement;
const stylizedCanvas = document.getElementById('stylized') as HTMLCanvasElement;

function stylize() {
  model.stylize(contentImg, styleImg).then((imageData) => {
    stylizedCanvas.getContext('2d').putImageData(imageData, 0, 0);
  });
}

model.initialize().then(stylize);

See style-transfer.glitch.me and our demos for example usage.

Example Commands

yarn install to install dependencies.

yarn test to run tests.

yarn bundle to produce a bundled version in dist/.

yarn run-demos to build and run the demo.

FAQs

Package last updated on 19 Dec 2018

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc