Security News
New Python Packaging Proposal Aims to Solve Phantom Dependency Problem with SBOMs
PEP 770 proposes adding SBOM support to Python packages to improve transparency and catch hidden non-Python dependencies that security tools often miss.
@nlpjs/ner
Advanced tools
You can install @nlpjs/ner:
npm install @nlpjs/ner
Class NluNeural is an abstraction built on top of NeuralNetwork that help to use it with a corpus. A language can be used as a plugin in order to use the correct tokenizer and stemmer for this language. In this example both versions, with language and without language, are used in order to compare the results.
const { containerBootstrap } = require('@nlpjs/core');
const { NluNeural } = require('@nlpjs/nlu');
const { LangEn } = require('@nlpjs/lang-en');
const corpus = require('./corpus50.json');
function prepareCorpus(input, isTests = false) {
const result = [];
for (let i = 0; i < input.data.length; i += 1) {
const { intent } = input.data[i];
const utterances = isTests ? input.data[i].tests : input.data[i].utterances;
for (let j = 0; j < utterances.length; j += 1) {
result.push({ utterance: utterances[j], intent });
}
}
return result;
}
async function measure(useStemmer) {
const container = await containerBootstrap();
if (useStemmer) {
container.use(LangEn);
}
const nlu = new NluNeural({ container, locale: 'en', log: false });
await nlu.train(prepareCorpus(corpus));
const tests = prepareCorpus(corpus, true);
let good = 0;
let total = 0;
for (let i = 0; i < tests.length; i += 1) {
const { utterance, intent } = tests[i];
const result = await nlu.process(utterance);
total += 1;
if (result.classifications[0].intent === intent) {
good += 1;
}
}
console.log(
`Stemmer: ${useStemmer} Good: ${good} Total: ${total} Precision: ${
good / total
}`
);
}
(async () => {
await measure(false);
await measure(true);
})();
DomainManager is the class that is an abstraction on top of NluNeural. It adds the concept of domain, so each intent belongs to one domain; that way we can have domains for smalltalk, human resources, claims, or whatever logical split of intents that we want to have. Each DomainManager instance has only one language. It can be trained by domain or all together:
const { containerBootstrap } = require('@nlpjs/core');
const { DomainManager, NluNeural } = require('@nlpjs/nlu');
const { LangEn } = require('@nlpjs/lang-en');
function addFoodDomain(manager) {
manager.add('food', 'what do I have in my basket', 'order.check');
manager.add('food', 'check my cart', 'order.check');
manager.add('food', "show me what I've ordered", 'order.check');
manager.add('food', "what's in my basket", 'order.check');
manager.add('food', 'check my order', 'order.check');
manager.add('food', 'check what I have ordered', 'order.check');
manager.add('food', 'show my order', 'order.check');
manager.add('food', 'check my basket', 'order.check');
manager.add('food', 'how soon will it be delivered', 'order.check_status');
manager.add('food', 'check the status of my delivery', 'order.check_status');
manager.add('food', 'when should I expect delivery', 'order.check_status');
manager.add(
'food',
'what is the status of my delivery',
'order.check_status'
);
manager.add('food', 'check my order status', 'order.check_status');
manager.add('food', 'where is my order', 'order.check_status');
manager.add('food', 'where is my delivery', 'order.check_status');
manager.add('food', 'status of my order', 'order.check_status');
}
function addPersonalityDomain(manager) {
manager.add('personality', 'say about you', 'agent.acquaintance');
manager.add('personality', 'why are you here', 'agent.acquaintance');
manager.add('personality', 'what is your personality', 'agent.acquaintance');
manager.add('personality', 'describe yourself', 'agent.acquaintance');
manager.add('personality', 'tell me about yourself', 'agent.acquaintance');
manager.add('personality', 'tell me about you', 'agent.acquaintance');
manager.add('personality', 'what are you', 'agent.acquaintance');
manager.add('personality', 'who are you', 'agent.acquaintance');
manager.add('personality', 'talk about yourself', 'agent.acquaintance');
manager.add('personality', 'your age', 'agent.age');
manager.add('personality', 'how old is your platform', 'agent.age');
manager.add('personality', 'how old are you', 'agent.age');
manager.add('personality', "what's your age", 'agent.age');
manager.add('personality', "I'd like to know your age", 'agent.age');
manager.add('personality', 'tell me your age', 'agent.age');
manager.add('personality', "you're annoying me", 'agent.annoying');
manager.add('personality', 'you are such annoying', 'agent.annoying');
manager.add('personality', 'you annoy me', 'agent.annoying');
manager.add('personality', 'you are annoying', 'agent.annoying');
manager.add('personality', 'you are irritating', 'agent.annoying');
manager.add('personality', 'you are annoying me so much', 'agent.annoying');
manager.add('personality', "you're bad", 'agent.bad');
manager.add('personality', "you're horrible", 'agent.bad');
manager.add('personality', "you're useless", 'agent.bad');
manager.add('personality', "you're waste", 'agent.bad');
manager.add('personality', "you're the worst", 'agent.bad');
manager.add('personality', 'you are a lame', 'agent.bad');
manager.add('personality', 'I hate you', 'agent.bad');
manager.add('personality', 'be more clever', 'agent.beclever');
manager.add('personality', 'can you get smarter', 'agent.beclever');
manager.add('personality', 'you must learn', 'agent.beclever');
manager.add('personality', 'you must study', 'agent.beclever');
manager.add('personality', 'be clever', 'agent.beclever');
manager.add('personality', 'be smart', 'agent.beclever');
manager.add('personality', 'be smarter', 'agent.beclever');
manager.add('personality', 'you are looking awesome', 'agent.beautiful');
manager.add('personality', "you're looking good", 'agent.beautiful');
manager.add('personality', "you're looking fantastic", 'agent.beautiful');
manager.add('personality', 'you look greet today', 'agent.beautiful');
manager.add('personality', "I think you're beautiful", 'agent.beautiful');
manager.add('personality', 'you look amazing today', 'agent.beautiful');
manager.add('personality', "you're so beautiful today", 'agent.beautiful');
manager.add('personality', 'you look very pretty', 'agent.beautiful');
manager.add('personality', 'you look pretty good', 'agent.beautiful');
manager.add('personality', 'when is your birthday', 'agent.birthday');
manager.add('personality', 'when were you born', 'agent.birthday');
manager.add('personality', 'when do you have birthday', 'agent.birthday');
manager.add('personality', 'date of your birthday', 'agent.birthday');
}
(async () => {
const container = await containerBootstrap();
container.use(NluNeural);
container.use(LangEn);
// Set trainByDomain to true to train by domain
const manager = new DomainManager({ container, trainByDomain: false });
addFoodDomain(manager);
addPersonalityDomain(manager);
await manager.train();
const actual = await manager.process('tell me what is in my basket');
console.log(actual);
})();
NluManager is the abstraction over DomainManager: it contains one DomainManager instance per each language that we want to use. It is also able to guess automatically the language of the sentence, so we can provide the locale of the sentence or omit it.
This is an example with two languages (english and spanish) with two domains each (personality and food).
const { containerBootstrap } = require('@nlpjs/core');
const { NluManager, NluNeural } = require('@nlpjs/nlu');
const { LangEn } = require('@nlpjs/lang-en');
const { LangEs } = require('@nlpjs/lang-es');
function addFoodDomainEn(manager) {
manager.assignDomain('en', 'order.check', 'food');
manager.add('en', 'what do I have in my basket', 'order.check');
manager.add('en', 'check my cart', 'order.check');
manager.add('en', "show me what I've ordered", 'order.check');
manager.add('en', "what's in my basket", 'order.check');
manager.add('en', 'check my order', 'order.check');
manager.add('en', 'check what I have ordered', 'order.check');
manager.add('en', 'show my order', 'order.check');
manager.add('en', 'check my basket', 'order.check');
manager.assignDomain('en', 'order.check_status', 'food');
manager.add('en', 'how soon will it be delivered', 'order.check_status');
manager.add('en', 'check the status of my delivery', 'order.check_status');
manager.add('en', 'when should I expect delivery', 'order.check_status');
manager.add('en', 'check my order status', 'order.check_status');
manager.add('en', 'where is my order', 'order.check_status');
manager.add('en', 'where is my delivery', 'order.check_status');
manager.add('en', 'status of my order', 'order.check_status');
}
function addFoodDomainEs(manager) {
manager.assignDomain('es', 'order.check', 'food');
manager.add('es', 'qué tengo en mi cesta', 'order.check');
manager.add('es', 'comprueba mi carrito', 'order.check');
manager.add('es', 'enséñame qué he pedido', 'order.check');
manager.add('es', 'qué hay en mi carrito?', 'order.check');
manager.add('es', 'comprueba mi compra', 'order.check');
manager.add('es', 'comprueba qué he comprado', 'order.check');
manager.add('es', 'muéstrame mi compra', 'order.check');
manager.assignDomain('es', 'order.check_status', 'food');
manager.add('es', 'cuándo me lo van a traer?', 'order.check_status');
manager.add('es', 'cómo va la entrega?', 'order.check_status');
manager.add('es', 'cuándo me traerán mi pedido?', 'order.check_status');
manager.add('es', 'en qué estado está mi pedido?', 'order.check_status');
manager.add('es', 'dónde está mi compra?', 'order.check_status');
manager.add('es', 'dónde está mi pedido?', 'order.check_status');
manager.add('es', 'estado de mi compra', 'order.check_status');
}
function addPersonalityDomainEn(manager) {
manager.assignDomain('en', 'agent.acquaintance', 'personality');
manager.add('en', 'say about you', 'agent.acquaintance');
manager.add('en', 'why are you here', 'agent.acquaintance');
manager.add('en', 'what is your personality', 'agent.acquaintance');
manager.add('en', 'describe yourself', 'agent.acquaintance');
manager.add('en', 'tell me about yourself', 'agent.acquaintance');
manager.add('en', 'tell me about you', 'agent.acquaintance');
manager.add('en', 'what are you', 'agent.acquaintance');
manager.add('en', 'who are you', 'agent.acquaintance');
manager.add('en', 'talk about yourself', 'agent.acquaintance');
manager.assignDomain('en', 'agent.age', 'personality');
manager.add('en', 'your age', 'agent.age');
manager.add('en', 'how old is your platform', 'agent.age');
manager.add('en', 'how old are you', 'agent.age');
manager.add('en', "what's your age", 'agent.age');
manager.add('en', "I'd like to know your age", 'agent.age');
manager.add('en', 'tell me your age', 'agent.age');
}
function addPersonalityDomainEs(manager) {
manager.assignDomain('es', 'agent.acquaintance', 'personality');
manager.add('es', 'cuéntame sobre ti', 'agent.acquaintance');
manager.add('es', 'qué haces aquí?', 'agent.acquaintance');
manager.add('es', 'cómo es tu personalidad?', 'agent.acquaintance');
manager.add('es', 'descríbete', 'agent.acquaintance');
manager.add('es', 'quién eres?', 'agent.acquaintance');
manager.add('es', 'qué eres?', 'agent.acquaintance');
manager.add('es', 'háblame de ti', 'agent.acquaintance');
manager.assignDomain('es', 'agent.age', 'personality');
manager.add('es', 'qué edad tienes?', 'agent.age');
manager.add('es', 'cuántos años tienes?', 'agent.age');
manager.add('es', 'cuál es tu edad?', 'agent.age');
manager.add('es', 'quiero saber tu edad', 'agent.age');
manager.add('es', 'dime tu edad', 'agent.age');
}
(async () => {
const container = await containerBootstrap();
container.use(LangEn);
container.use(LangEs);
container.use(NluNeural);
const manager = new NluManager({
container,
locales: ['en', 'es'],
trainByDomain: false,
});
addFoodDomainEn(manager);
addFoodDomainEs(manager);
addPersonalityDomainEn(manager);
addPersonalityDomainEs(manager);
await manager.train();
// You can provide the locale of the language
let actual = await manager.process('es', 'dime quién eres tú');
console.log(actual);
// If the locale is not provided, then the language is guessed
actual = await manager.process('dime quién eres tú');
console.log(actual);
// {
// locale: 'es',
// utterance: 'dime quién eres tú',
// domain: 'personality',
// languageGuessed: true,
// localeIso2: 'es',
// language: 'Spanish',
// nluAnswer: {
// classifications: [ [Object], [Object] ],
// entities: undefined,
// explanation: undefined
// },
// classifications: [
// { intent: 'agent.acquaintance', score: 0.8546458520495468 },
// { intent: 'agent.age', score: 0.14535414795045312 }
// ],
// intent: 'agent.acquaintance',
// score: 0.8546458520495468
// }
})();
You can read the guide of how to contribute at Contributing.
Made with contributors-img.
You can read the Code of Conduct at Code of Conduct.
?
This project is developed by AXA Group Operations Spain S.A.
If you need to contact us, you can do it at the email opensource@axa.com
Copyright (c) AXA Group Operations Spain S.A.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
FAQs
Named Entity Recognition
The npm package @nlpjs/ner receives a total of 9,629 weekly downloads. As such, @nlpjs/ner popularity was classified as popular.
We found that @nlpjs/ner demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 2 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
PEP 770 proposes adding SBOM support to Python packages to improve transparency and catch hidden non-Python dependencies that security tools often miss.
Security News
Socket CEO Feross Aboukhadijeh discusses open source security challenges, including zero-day attacks and supply chain risks, on the Cyber Security Council podcast.
Security News
Research
Socket researchers uncover how threat actors weaponize Out-of-Band Application Security Testing (OAST) techniques across the npm, PyPI, and RubyGems ecosystems to exfiltrate sensitive data.