Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More โ†’
Socket
Sign inDemoInstall
Socket

@promptbook/anthropic-claude

Package Overview
Dependencies
Maintainers
0
Versions
262
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@promptbook/anthropic-claude

Supercharge your use of large language models

  • 0.74.0-0
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
727
increased by58.04%
Maintainers
0
Weekly downloads
ย 
Created
Source

Promptbook logo - cube with letters P and B Promptbook

Build responsible, controlled and transparent applications on top of LLM models!

NPM Version of Promptbook logo - cube with letters P and B Promptbook Quality of package Promptbook logo - cube with letters P and B Promptbook Known Vulnerabilities Issues

โœจ New Features

  • ๐Ÿ’™ Working on the Book language v1
  • ๐Ÿ“š Support of .docx, .doc and .pdf documents
  • โœจ Support of OpenAI o1 model
โš  Warning: This is a pre-release version of the library. It is not yet ready for production use. Please look at latest stable release.

๐Ÿ“ฆ Package @promptbook/anthropic-claude

To install this package, run:

# Install entire promptbook ecosystem
npm i ptbk

# Install just this package to save space
npm install @promptbook/anthropic-claude

@promptbook/anthropic-claude integrates Anthropic's Claude API with Promptbook. It allows to execute Promptbooks with OpenAI Claude 2 and 3 models.

๐Ÿงก Usage

import { createPipelineExecutor, createCollectionFromDirectory, assertsExecutionSuccessful } from '@promptbook/core';
import {
    createCollectionFromDirectory,
    $provideExecutionToolsForNode,
    $provideFilesystemForNode,
} from '@promptbook/node';
import { JavascriptExecutionTools } from '@promptbook/execute-javascript';
import { AnthropicClaudeExecutionTools } from '@promptbook/anthropic-claude';

// โ–ถ Prepare tools
const fs = $provideFilesystemForNode();
const llm = new AnthropicClaudeExecutionTools(
    //            <- TODO: [๐Ÿงฑ] Implement in a functional (not new Class) way
    {
        isVerbose: true,
        apiKey: process.env.ANTHROPIC_CLAUDE_API_KEY,
    },
);
const executables = await $provideExecutablesForNode();
const tools = {
    llm,
    fs,
    scrapers: await $provideScrapersForNode({ fs, llm, executables }),
    script: [new JavascriptExecutionTools()],
};

// โ–ถ Create whole pipeline collection
const collection = await createCollectionFromDirectory('./promptbook-collection', tools);

// โ–ถ Get single Pipeline
const pipeline = await collection.getPipelineByUrl(`https://promptbook.studio/my-collection/write-article.ptbk.md`);

// โ–ถ Create executor - the function that will execute the Pipeline
const pipelineExecutor = createPipelineExecutor({ pipeline, tools });

// โ–ถ Prepare input parameters
const inputParameters = { word: 'rabbit' };

// ๐Ÿš€โ–ถ Execute the Pipeline
const result = await pipelineExecutor(inputParameters);

// โ–ถ Fail if the execution was not successful
assertsExecutionSuccessful(result);

// โ–ถ Handle the result
const { isSuccessful, errors, outputParameters, executionReport } = result;
console.info(outputParameters);

๐Ÿง™โ€โ™‚๏ธ Connect to LLM providers automatically

You can just use $provideExecutionToolsForNode function to create all required tools from environment variables like ANTHROPIC_CLAUDE_API_KEY and OPENAI_API_KEY automatically.

import { createPipelineExecutor, createCollectionFromDirectory, assertsExecutionSuccessful } from '@promptbook/core';
import { JavascriptExecutionTools } from '@promptbook/execute-javascript';
import { $provideExecutionToolsForNode } from '@promptbook/node';
import { $provideFilesystemForNode } from '@promptbook/node';

// โ–ถ Prepare tools
const tools = await $provideExecutionToolsForNode();

// โ–ถ Create whole pipeline collection
const collection = await createCollectionFromDirectory('./promptbook-collection', tools);

// โ–ถ Get single Pipeline
const pipeline = await collection.getPipelineByUrl(`https://promptbook.studio/my-collection/write-article.ptbk.md`);

// โ–ถ Create executor - the function that will execute the Pipeline
const pipelineExecutor = createPipelineExecutor({ pipeline, tools });

// โ–ถ Prepare input parameters
const inputParameters = { word: 'dog' };

// ๐Ÿš€โ–ถ Execute the Pipeline
const result = await pipelineExecutor(inputParameters);

// โ–ถ Fail if the execution was not successful
assertsExecutionSuccessful(result);

// โ–ถ Handle the result
const { isSuccessful, errors, outputParameters, executionReport } = result;
console.info(outputParameters);

๐Ÿ’• Usage of multiple LLM providers

You can use multiple LLM providers in one Promptbook execution. The best model will be chosen automatically according to the prompt and the model's capabilities.

import { createPipelineExecutor, createCollectionFromDirectory, assertsExecutionSuccessful } from '@promptbook/core';
import { $provideExecutionToolsForNode } from '@promptbook/node';
import { $provideFilesystemForNode } from '@promptbook/node';
import { JavascriptExecutionTools } from '@promptbook/execute-javascript';
import { OpenAiExecutionTools } from '@promptbook/openai';

// โ–ถ Prepare multiple tools
const fs = $provideFilesystemForNode();
const llm = [
    // Note: ๐Ÿ’• You can use multiple LLM providers in one Promptbook execution.
    //       The best model will be chosen automatically according to the prompt and the model's capabilities.
    new AnthropicClaudeExecutionTools(
        //            <- TODO: [๐Ÿงฑ] Implement in a functional (not new Class) way
        {
            apiKey: process.env.ANTHROPIC_CLAUDE_API_KEY,
        },
    ),
    new OpenAiExecutionTools(
        //            <- TODO: [๐Ÿงฑ] Implement in a functional (not new Class) way
        {
            apiKey: process.env.OPENAI_API_KEY,
        },
    ),
    new AzureOpenAiExecutionTools(
        //            <- TODO: [๐Ÿงฑ] Implement in a functional (not new Class) way
        {
            resourceName: process.env.AZUREOPENAI_RESOURCE_NAME,
            deploymentName: process.env.AZUREOPENAI_DEPLOYMENT_NAME,
            apiKey: process.env.AZUREOPENAI_API_KEY,
        },
    ),
];
const executables = await $provideExecutablesForNode();
const tools = {
    llm,
    fs,
    scrapers: await $provideScrapersForNode({ fs, llm, executables }),
    script: [new JavascriptExecutionTools()],
};

// โ–ถ Create whole pipeline collection
const collection = await createCollectionFromDirectory('./promptbook-collection', tools);

// โ–ถ Get single Pipeline
const pipeline = await collection.getPipelineByUrl(`https://promptbook.studio/my-collection/write-article.ptbk.md`);

// โ–ถ Create executor - the function that will execute the Pipeline
const pipelineExecutor = createPipelineExecutor({ pipeline, tools });

// โ–ถ Prepare input parameters
const inputParameters = { word: 'bunny' };

// ๐Ÿš€โ–ถ Execute the Pipeline
const result = await pipelineExecutor(inputParameters);

// โ–ถ Fail if the execution was not successful
assertsExecutionSuccessful(result);

// โ–ถ Handle the result
const { isSuccessful, errors, outputParameters, executionReport } = result;
console.info(outputParameters);

๐Ÿ’™ Integration with other models

See the other models available in the Promptbook package:


Rest of the documentation is common for entire promptbook ecosystem:

๐Ÿค The Promptbook Whitepaper

If you have a simple, single prompt for ChatGPT, GPT-4, Anthropic Claude, Google Gemini, Llama 3, or whatever, it doesn't matter how you integrate it. Whether it's calling a REST API directly, using the SDK, hardcoding the prompt into the source code, or importing a text file, the process remains the same.

But often you will struggle with the limitations of LLMs, such as hallucinations, off-topic responses, poor quality output, language and prompt drift, word repetition repetition repetition repetition or misuse, lack of context, or just plain w๐’†๐ขrd resp0nses. When this happens, you generally have three options:

  1. Fine-tune the model to your specifications or even train your own.
  2. Prompt-engineer the prompt to the best shape you can achieve.
  3. Orchestrate multiple prompts in a pipeline to get the best result.

In all of these situations, but especially in 3., the โœจ Promptbook can make your life waaaaaaaaaay easier.

  • Separates concerns between prompt-engineer and programmer, between code files and prompt files, and between prompts and their execution logic. For this purpose, it introduces a new language called the ๐Ÿ’™ Book.
  • Book allows you to focus on the business logic without having to write code or deal with the technicalities of LLMs.
  • Forget about low-level details like choosing the right model, tokens, context size, temperature, top-k, top-p, or kernel sampling. Just write your intent and persona who should be responsible for the task and let the library do the rest.
  • We have built-in orchestration of pipeline execution and many tools to make the process easier, more reliable, and more efficient, such as caching, compilation+preparation, just-in-time fine-tuning, expectation-aware generation, agent adversary expectations, and more.
  • Sometimes even the best prompts with the best framework like Promptbook :) can't avoid the problems. In this case, the library has built-in anomaly detection and logging to help you find and fix the problems.
  • Versioning is build in. You can test multiple A/B versions of pipelines and see which one works best.
  • Promptbook is designed to use RAG (Retrieval-Augmented Generation) and other advanced techniques to bring the context of your business to generic LLM. You can use knowledge to improve the quality of the output.

๐Ÿ’œ The Promptbook Project

Promptbook whitepaperBasic motivations and problems which we are trying to solvehttps://github.com/webgptorg/book
Promptbook (system)Promptbook ...
Book language Book is a markdown-like language to define projects, pipelines, knowledge,... in the Promptbook system. It is designed to be understandable by non-programmers and non-technical people
Promptbook typescript projectImplementation of Promptbook in TypeScript published into multiple packages to NPMhttps://github.com/webgptorg/promptbook
Promptbook studioPromptbook studiohttps://github.com/hejny/promptbook-studio
Promptbook miniappsPromptbook miniapps

๐Ÿ’™ Book language (for prompt-engineer)

Promptbook pipelines are written in markdown-like language called Book. It is designed to be understandable by non-programmers and non-technical people.

# ๐ŸŒŸ My first Book

-   INPUT PARAMETER {subject}
-   OUTPUT PARAMETER {article}

## Sample subject

> Promptbook

-> {subject}

## Write an article

-   PERSONA Jane, marketing specialist with prior experience in writing articles about technology and artificial intelligence
-   KNOWLEDGE https://ptbk.io
-   KNOWLEDGE ./promptbook.pdf
-   EXPECT MIN 1 Sentence
-   EXPECT MAX 1 Paragraph

> Write an article about the future of artificial intelligence in the next 10 years and how metalanguages will change the way AI is used in the world.
> Look specifically at the impact of {subject} on the AI industry.

-> {article}

๐Ÿ“ฆ Packages (for developers)

This library is divided into several packages, all are published from single monorepo. You can install all of them at once:

npm i ptbk

Or you can install them separately:

โญ Marked packages are worth to try first

๐Ÿ“š Dictionary

The following glossary is used to clarify certain concepts:

Basic terms

Core concepts

Advanced concepts

๐Ÿ”Œ Usage in Typescript / Javascript

โž•โž– When to use Promptbook?

โž• When to use

  • When you are writing app that generates complex things via LLM - like websites, articles, presentations, code, stories, songs,...
  • When you want to separate code from text prompts
  • When you want to describe complex prompt pipelines and don't want to do it in the code
  • When you want to orchestrate multiple prompts together
  • When you want to reuse parts of prompts in multiple places
  • When you want to version your prompts and test multiple versions
  • When you want to log the execution of prompts and backtrace the issues

See more

โž– When not to use

  • When you have already implemented single simple prompt and it works fine for your job
  • When OpenAI Assistant (GPTs) is enough for you
  • When you need streaming (this may be implemented in the future, see discussion).
  • When you need to use something other than JavaScript or TypeScript (other languages are on the way, see the discussion)
  • When your main focus is on something other than text - like images, audio, video, spreadsheets (other media types may be added in the future, see discussion)
  • When you need to use recursion (see the discussion)

See more

๐Ÿœ Known issues

๐Ÿงผ Intentionally not implemented features

โ” FAQ

If you have a question start a discussion, open an issue or write me an email.

โŒš Changelog

See CHANGELOG.md

๐Ÿ“œ License

Promptbook by Pavol Hejnรฝ is licensed under CC BY 4.0

๐ŸŽฏ Todos

See TODO.md

๐Ÿ–‹๏ธ Contributing

I am open to pull requests, feedback, and suggestions. Or if you like this utility, you can โ˜• buy me a coffee or donate via cryptocurrencies.

You can also โญ star the promptbook package, follow me on GitHub or various other social networks.

Keywords

FAQs

Package last updated on 10 Nov 2024

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with โšก๏ธ by Socket Inc