@sap-ai-sdk/ai-api
SAP Cloud SDK for AI is the official Software Development Kit (SDK) for SAP AI Core, SAP Generative AI Hub, and Orchestration Service.
This package provides tools to manage scenarios and workflows in SAP AI Core.
- Streamline data preprocessing and model training pipelines.
- Execute batch inference jobs.
- Deploy inference endpoints for trained models.
- Register custom Docker registries, sync AI content from Git repositories, and register object storage for training data and model artifacts.
We maintain a list of currently available and tested AI Core APIs
Table of Contents
Installation
$ npm install @sap-ai-sdk/ai-api
Version Management
⚠️ Important: This package contains generated code.
Updates to this package may include breaking changes.
To ensure compatibility and manage updates effectively, we strongly recommend using the tilde (~
) version range in your project instead of the caret (^
). This approach will allow patch-level updates while preventing potentially breaking minor version changes.
"dependencies": {
"@sap-ai-sdk/ai-api": "~1.0.0"
}
Prerequisites
Accessing the AI Core Service via the SDK
The SDK automatically retrieves the AI Core
service credentials and resolves the access token needed for authentication.
- In Cloud Foundry, it's accessed from the
VCAP_SERVICES
environment variable. - In Kubernetes / Kyma environments, you have to mount the service binding as a secret instead, for more information refer to this documentation.
Usage
The examples below demonstrate the usage of the most commonly used APIs in SAP AI Core.
In addition to the examples below, you can find more sample code here.
Create an Artifact
async function createArtifact() {
const requestBody: ArtifactPostData = {
name: 'training-test-dataset',
kind: 'dataset',
url: 'https://ai.example.com',
scenarioId: 'foundation-models'
};
try {
const responseData: ArtifactCreationResponse =
await ArtifactApi.artifactCreate(requestBody, {
'AI-Resource-Group': 'default'
}).execute();
return responseData;
} catch (errorData) {
const apiError = errorData.response.data.error as ApiError;
console.error('Status code:', errorData.response.status);
throw new Error(`Artifact creation failed: ${apiError.message}`);
}
}
Create a Configuration
async function createConfiguration() {
const requestBody: ConfigurationBaseData = {
name: 'gpt-35-turbo',
executableId: 'azure-openai',
scenarioId: 'foundation-models',
parameterBindings: [
{
key: 'modelName',
value: 'gpt-35-turbo'
},
{
key: 'modelVersion',
value: 'latest'
}
],
inputArtifactBindings: []
};
try {
const responseData: ConfigurationCreationResponse =
await ConfigurationApi.configurationCreate(requestBody, {
'AI-Resource-Group': 'default'
}).execute();
return responseData;
} catch (errorData) {
const apiError = errorData.response.data.error as ApiError;
console.error('Status code:', errorData.response.status);
throw new Error(`Configuration creation failed: ${apiError.message}`);
}
}
Create a Deployment
async function createDeployment() {
const requestBody: DeploymentCreationRequest = {
configurationId: '0a1b2c3d-4e5f6g7h'
};
try{
const responseData: DeploymentCreationResponse = await DeploymentApi
.deploymentCreate(requestBody, {'AI-Resource-Group': 'default'})
.execute();
return responseData;
} catch (errorData) {
const apiError = errorData.response.data.error as ApiError;
console.error('Status code:', errorData.response.status);
throw new Error(`Deployment creation failed: ${apiError.message}`);
}
}
Delete a Deployment
Only deployments with targetStatus: STOPPED
can be deleted.
Thus, a modification request must be sent before deletion can occur.
async function modifyDeployment() {
let deploymentId: string = '0a1b2c3d4e5f';
const deployment: DeploymentResponseWithDetails =
await DeploymentApi.deploymentGet(
deploymentId,
{},
{ 'AI-Resource-Group': 'default' }
).execute();
if (deployment.targetStatus === 'RUNNING') {
const requestBody: DeploymentModificationRequest = {
targetStatus: 'STOPPED'
};
try {
await DeploymentApi.deploymentModify(deploymentId, requestBody, {
'AI-Resource-Group': 'default'
}).execute();
} catch (errorData) {
const apiError = errorData.response.data.error as ApiError;
console.error('Status code:', errorData.response.status);
throw new Error(`Deployment modification failed: ${apiError.message}`);
}
}
try {
return DeploymentApi.deploymentDelete(deploymentId, {
'AI-Resource-Group': 'default'
}).execute();
} catch (errorData) {
const apiError = errorData.response.data.error as ApiError;
console.error('Status code:', errorData.response.status);
throw new Error(`Deployment deletion failed: ${apiError.message}`);
}
}
Custom Destination
When calling the execute()
method, it is possible to provide a custom destination.
For example, when querying deployments targeting a destination with the name my-destination
, the following code can be used:
const queryParams = status ? { status } : {};
return DeploymentApi.deploymentQuery(queryParams, {
'AI-Resource-Group': resourceGroup
}).execute({
destinationName: 'my-destination'
});
By default, the fetched destination is cached.
To disable caching, set the useCache
parameter to false
together with the destinationName
parameter.
Local Testing
For local testing instructions, refer to this section.
Support, Feedback, Contribution
This project is open to feature requests, bug reports and questions via GitHub issues.
Contribution and feedback are encouraged and always welcome.
For more information about how to contribute, the project structure, as well as additional contribution information, see our Contribution Guidelines.
License
The SAP Cloud SDK for AI is released under the Apache License Version 2.0..