SingleStore AI
A module that enhances the @singlestore/client
package with AI functionality, allowing you to integrate AI features like embeddings and chat completions.
Table of Contents
Installation
npm install @singlestore/ai
Usage
Initialization
The AI
class can be initialized in various ways depending on your requirements. You can start with the default setup, or extend it with custom managers for embeddings and chat completions, or even add custom tools.
Default
This is the simplest way to initialize the AI
class, using an OpenAI API key.
import { AI } from "@singlestore/ai";
const ai = new AI({ openAIApiKey: "<OPENAI_API_KEY>" });
With Custom Embeddings Manager
You can define a custom embeddings manager by extending the EmbeddingsManager
class to handle how embeddings are created and models are selected.
import { type CreateEmbeddingsParams, type Embedding, EmbeddingsManager } from "@singlestore/ai";
class CustomEmbeddingsManager extends EmbeddingsManager {
getModels(): string[] {
return ["<MODEL_NAME>"];
}
async create(input: string | string[], params?: CreateEmbeddingsParams): Promise<Embedding[]> {
const embeddings: Embedding[] = await customFnCall();
return embeddings;
}
}
const ai = new AI({
openAIApiKey: "<OPENAI_API_KEY>",
embeddingsManager: new CustomEmbeddingsManager(),
});
With Custom Chat Completions Manager
You can define a custom chat completions manager by extending the ChatCompletionsManager
class. This allows you to modify how chat completions are handled, whether in a streaming or non-streaming fashion.
import {
type AnyChatCompletionTool,
ChatCompletionsManager,
type CreateChatCompletionParams,
type CreateChatCompletionResult,
type MergeChatCompletionTools,
} from "@singlestore/ai";
type ChatCompletionTools = undefined;
class CustomChatCompletionsManager extends ChatCompletionsManager<ChatCompletionTools> {
getModels(): Promise<string[]> | string[] {
return ["<MODEL_NAME>"];
}
create<TStream extends boolean, TTools extends AnyChatCompletionTool[] | undefined>(
params: CreateChatCompletionParams<TStream, MergeChatCompletionTools<ChatCompletionTools, TTools>>,
): Promise<CreateChatCompletionResult<TStream>> {
if (params.stream) {
const stream = customFnCall();
return stream as Promise<CreateChatCompletionResult<TStream>>;
}
const chatCompletion = await customFnCall();
return chatCompletion as Promise<CreateChatCompletionResult<TStream>>;
}
}
const ai = new AI({
openAIApiKey: "<OPENAI_API_KEY>",
chatCompletionsManager: new CustomChatCompletionsManager(),
});
With Custom Chat Completion Tools
You can also create custom tools to extend the functionality of the chat completions by defining them with the ChatCompletionTool
class.
import { ChatCompletionTool } from "@singlestore/ai";
import { z } from "zod";
const customTool = new ChatCompletionTool({
name: "<TOOL_NAME>",
description: "<TOOL_DESCRIPTION>",
params: z.object({ paramName: z.string().describe("<PARAM_DESCRIPTION>") }),
call: async (params) => {
const value = await anyFnCall(params);
return { name: "<TOOL_NAME>", params, value: JSON.stringify(value) };
},
});
const ai = new AI({
tools: [customTool],
...
});
With Custom Text Splitter
You can define a custom text splitter by extending the TextSplitter
class to handle how text is split.
import { AI, TextSplitter, TextSplitterSplitOptions } from "@singlestore/ai";
class CustomTextSplitter extends TextSplitter {
split(text: string, options?: TextSplitterSplitOptions): string[] {
return [];
}
}
const ai = new AI({ textSplitter: new CustomTextSplitter() });
Additional Notes
- If you declare a custom embeddings manager and a custom chat completions manager, the
openAIApiKey
parameter is not required. - Custom managers and tools allow for extensive customization, giving you the flexibility to integrate AI functionality tailored to your specific needs.
Embeddings
Get Embedding Models
const models = ai.embeddings.getModels();
Create Embeddings
Create Single Embedding
const embeddings = await ai.embeddings.create("<INPUT>", {
model: "<MODEL_NAME>",
dimensions: "<DIMENSION>",
});
Create Multiple Embeddings
const embeddings = await ai.embeddings.create(["<INPUT>", "<INPUT_2>"], ...);
Additional Notes
- If a custom
EmbeddingsManager
is provided, all the parameters can still be passed to the ai.embeddings.create
method, allowing for custom handling and logic while preserving the same interface.
Chat Completions
Get Chat Completion Models
const models = ai.chatCompletions.getModels();
Create Chat Completion
The create
method allows you to generate chat completions either as a complete string or in a streamed fashion, depending on the stream
option.
As String
Performs a chat completion and returns the result as a complete string.
const chatCompletion = await ai.chatCompletions.create({
stream: false,
prompt: "<PROMPT>",
model: "<MODEL_NAME>",
systemRole: "<SYSTEM_ROLE>",
messages: [{ role: "user", content: "<CONTENT>" }],
});
As Stream
Performs a chat completion and returns the result as a stream of data chunks.
const stream = await ai.chatCompletions.create({
stream: true,
prompt: "<PROMPT>",
model: "<MODEL_NAME>",
systemRole: "<SYSTEM_ROLE>",
messages: [{ role: "user", content: "<CONTENT>" }],
tools: [...]
});
const chatCompletion = await ai.chatCompletions.handleStream(stream, async (chunk) => {
await customFnCall(chunk);
});
Additional Notes
- When using
stream: true
, the handleStream
function processes the stream and accepts a callback function as the second argument. The callback handles each new chunk of data as it arrives. - You can use the messages array to provide additional context for the chat completion, such as user messages or system instructions.
- If a custom
ChatCompletionsManager
is provided, all the parameters can still be passed to the ai.chatCompletions.create
method, allowing for custom handling and logic while preserving the same interface.
Text Splitter
Split Text
Breaks a given text into smaller chunks, making it easier to handle for tasks like generating embeddings. By default, it splits text by sentences, but you can customize it to use a different delimiter or set the maximum chunk size.
const chunks = ai.textSplitter.split(
text,
{
chunkSize: 1024,
delimiter: " ",
},
);