Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

@stdlib/blas-base-dscal

Package Overview
Dependencies
Maintainers
4
Versions
15
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@stdlib/blas-base-dscal

Multiply a double-precision floating-point vector by a constant.

  • 0.0.3
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
1.1K
increased by5.96%
Maintainers
4
Weekly downloads
 
Created
Source

dscal

NPM version Build Status Coverage Status dependencies

Multiply a double-precision floating-point vector x by a constant alpha.

Installation

npm install @stdlib/blas-base-dscal

Usage

var dscal = require( '@stdlib/blas-base-dscal' );
dscal( N, alpha, x, stride )

Multiplies a double-precision floating-point vector x by a constant alpha.

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ] );

dscal( x.length, 5.0, x, 1 );
// x => <Float64Array>[ -10.0, 5.0, 15.0, -25.0, 20.0, 0.0, -5.0, -15.0 ]

The function has the following parameters:

  • N: number of indexed elements.
  • alpha: scalar constant.
  • x: input Float64Array.
  • stride: index increment.

The N and stride parameters determine which elements in x are accessed at runtime. For example, to multiply every other value by a constant

var Float64Array = require( '@stdlib/array-float64' );
var floor = require( '@stdlib/math-base-special-floor' );

var x = new Float64Array( [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ] );

var N = floor( x.length / 2 );

dscal( N, 5.0, x, 2 );
// x => <Float64Array>[ -10.0, 1.0, 15.0, -5.0, 20.0, 0.0, -5.0, -3.0 ]

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array-float64' );
var floor = require( '@stdlib/math-base-special-floor' );

// Initial array...
var x0 = new Float64Array( [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ] );

// Create an offset view...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var N = 3;

// Scale every other value...
dscal( N, 5.0, x1, 2 );
// x0 => <Float64Array>[ 1.0, -10.0, 3.0, -20.0, 5.0, -30.0 ]

If either N or stride is less than or equal to 0, the function returns x unchanged.

dscal.ndarray( N, alpha, x, stride, offset )

Multiplies a double-precision floating-point vector x by a constant alpha using alternative indexing semantics.

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ] );

dscal.ndarray( x.length, 5.0, x, 1, 0 );
// x => <Float64Array>[ -10.0, 5.0, 15.0, -25.0, 20.0, 0.0, -5.0, -15.0 ]

The function has the following additional parameters:

  • offset: starting index.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to multiply the last three elements of x by a constant

var Float64Array = require( '@stdlib/array-float64' );

var x = new Float64Array( [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ] );

dscal.ndarray( 3, 5.0, x, 1, x.length-3 );
// x => <Float64Array>[ 1.0, -2.0, 3.0, -20.0, 25.0, -30.0 ]

Notes

  • If N <= 0, both functions return x unchanged.
  • dscal() corresponds to the BLAS level 1 function dscal.

Examples

var round = require( '@stdlib/math-base-special-round' );
var randu = require( '@stdlib/random-base-randu' );
var Float64Array = require( '@stdlib/array-float64' );
var dscal = require( '@stdlib/blas-base-dscal' );

var rand;
var sign;
var x;
var i;

x = new Float64Array( 10 );
for ( i = 0; i < x.length; i++ ) {
    rand = round( randu()*100.0 );
    sign = randu();
    if ( sign < 0.5 ) {
        sign = -1.0;
    } else {
        sign = 1.0;
    }
    x[ i ] = sign * rand;
}
console.log( x );

dscal( x.length, 5.0, x, 1 );
console.log( x );

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.


License

See LICENSE.

Copyright © 2016-2021. The Stdlib Authors.

Keywords

FAQs

Package last updated on 15 Jun 2021

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc