Research
Security News
Threat Actor Exposes Playbook for Exploiting npm to Build Blockchain-Powered Botnets
A threat actor's playbook for exploiting the npm ecosystem was exposed on the dark web, detailing how to build a blockchain-powered botnet.
@stdlib/complex-float32-ctor
Advanced tools
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
64-bit complex number.
npm install @stdlib/complex-float32-ctor
var Complex64 = require( '@stdlib/complex-float32-ctor' );
64-bit complex number constructor, where real
and imag
are the real and imaginary components, respectively.
var z = new Complex64( 5.0, 3.0 );
// returns <Complex64>
Size (in bytes) of each component.
var nbytes = Complex64.BYTES_PER_ELEMENT;
// returns 4
Size (in bytes) of each component.
var z = new Complex64( 5.0, 3.0 );
var nbytes = z.BYTES_PER_ELEMENT;
// returns 4
Length (in bytes) of a complex number.
var z = new Complex64( 5.0, 3.0 );
var nbytes = z.byteLength;
// returns 8
A Complex64
instance has the following properties...
A read-only property returning the real component.
var z = new Complex64( 5.0, 3.0 );
var re = z.re;
// returns 5.0
A read-only property returning the imaginary component.
var z = new Complex64( 5.0, -3.0 );
var im = z.im;
// returns -3.0
These methods do not mutate a Complex64
instance and, instead, return a complex number representation.
Returns a string
representation of a Complex64
instance.
var z = new Complex64( 5.0, 3.0 );
var str = z.toString();
// returns '5 + 3i'
z = new Complex64( -5.0, -3.0 );
str = z.toString();
// returns '-5 - 3i'
Returns a JSON representation of a Complex64
instance. JSON.stringify()
implicitly calls this method when stringifying a Complex64
instance.
var z = new Complex64( 5.0, -3.0 );
var o = z.toJSON();
/*
{
"type": "Complex64",
"re": 5.0,
"im": -3.0
}
*/
To revive a Complex64
number from a JSON string
, see @stdlib/complex/float32/reviver.
var Complex64 = require( '@stdlib/complex-float32-ctor' );
var z = new Complex64( 3.0, -2.0 );
console.log( 'type: %s', typeof z );
// => 'type: object'
console.log( 'str: %s', z );
// => 'str: 3 - 2i'
console.log( 'real: %d', z.re );
// => 'real: 3'
console.log( 'imaginary: %d', z.im );
// => 'imaginary: -2'
console.log( 'JSON: %s', JSON.stringify( z ) );
// => 'JSON: {"type":"Complex64","re":3,"im":-2}'
#include "stdlib/complex/float32/ctor.h"
An opaque type definition for a single-precision complex floating-point number.
stdlib_complex64_t z = stdlib_complex64( 5.0f, 2.0f );
An opaque type definition for a union for accessing the real and imaginary parts of a single-precision complex floating-point number.
float realf( const stdlib_complex64_t z ) {
stdlib_complex64_parts_t v;
// Assign a single-precision complex floating-point number:
v.value = z;
// Extract the real component:
float re = v.parts[ 0 ];
return re;
}
// ...
// Create a complex number:
stdlib_complex64_t z = stdlib_complex64( 5.0f, 2.0f );
// ...
// Access the real component:
float re = realf( z );
// returns 5.0f
The union has the following members:
value: stdlib_complex64_t
single-precision complex floating-point number.
parts: float[]
array having the following elements:
float
real component.float
imaginary component.Returns a single-precision complex floating-point number.
stdlib_complex64_t z = stdlib_complex64( 5.0f, 2.0f );
The function accepts the following arguments:
[in] float
real component.[in] float
imaginary component.stdlib_complex64_t stdlib_complex64( const float real, const float imag );
Converts a single-precision floating-point number to a single-precision complex floating-point number.
stdlib_complex64_t z = stdlib_complex64_from_float32( 5.0f );
The function accepts the following arguments:
[in] float
real component.stdlib_complex64_t stdlib_complex64_from_float32( const float real );
Converts a double-precision floating-point number to a single-precision complex floating-point number.
stdlib_complex64_t z = stdlib_complex64_from_float64( 5.0 );
The function accepts the following arguments:
[in] double
real component.stdlib_complex64_t stdlib_complex64_from_float64( const double real );
Converts (copies) a single-precision complex floating-point number to a single-precision complex floating-point number.
stdlib_complex64_t z1 = stdlib_complex64( 5.0f, 3.0f );
stdlib_complex64_t z2 = stdlib_complex64_from_complex64( z1 );
The function accepts the following arguments:
[in] stdlib_complex64_t
single-precision complex floating-point number.stdlib_complex64_t stdlib_complex64_from_complex64( const stdlib_complex64_t z );
Converts a signed 8-bit integer to a single-precision complex floating-point number.
stdlib_complex64_t z = stdlib_complex64_from_int8( 5 );
The function accepts the following arguments:
[in] int8_t
real component.stdlib_complex64_t stdlib_complex64_from_int8( const int8_t real );
Converts an unsigned 8-bit integer to a single-precision complex floating-point number.
stdlib_complex64_t z = stdlib_complex64_from_uint8( 5 );
The function accepts the following arguments:
[in] uint8_t
real component.stdlib_complex64_t stdlib_complex64_from_uint8( const uint8_t real );
Converts a signed 16-bit integer to a single-precision complex floating-point number.
stdlib_complex64_t z = stdlib_complex64_from_int16( 5 );
The function accepts the following arguments:
[in] int16_t
real component.stdlib_complex64_t stdlib_complex64_from_int16( const int16_t real );
Converts an unsigned 16-bit integer to a single-precision complex floating-point number.
stdlib_complex64_t z = stdlib_complex64_from_uint16( 5 );
The function accepts the following arguments:
[in] uint16_t
real component.stdlib_complex64_t stdlib_complex64_from_uint16( const uint16_t real );
#include "stdlib/complex/float32/ctor.h"
#include <stdint.h>
#include <stdio.h>
/**
* Return the real component of a single-precision complex floating-point number.
*
* @param z complex number
* @return real component
*/
static float real( const stdlib_complex64_t z ) {
stdlib_complex64_parts_t v;
// Assign a single-precision complex floating-point number:
v.value = z;
// Extract the real component:
float re = v.parts[ 0 ];
return re;
}
/**
* Return the imaginary component of a single-precision complex floating-point number.
*
* @param z complex number
* @return imaginary component
*/
static float imag( const stdlib_complex64_t z ) {
stdlib_complex64_parts_t v;
// Assign a single-precision complex floating-point number:
v.value = z;
// Extract the imaginary component:
float im = v.parts[ 1 ];
return im;
}
int main( void ) {
const stdlib_complex64_t x[] = {
stdlib_complex64( 5.0f, 2.0f ),
stdlib_complex64( -2.0f, 1.0f ),
stdlib_complex64( 0.0f, -0.0f ),
stdlib_complex64( 0.0f/0.0f, 0.0f/0.0f )
};
stdlib_complex64_t v;
int i;
for ( i = 0; i < 4; i++ ) {
v = x[ i ];
printf( "%f + %fi\n", real( v ), imag( v ) );
}
}
@stdlib/complex-cmplx
: create a complex number.@stdlib/complex-float64/ctor
: 128-bit complex number.This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.
FAQs
64-bit complex number.
We found that @stdlib/complex-float32-ctor demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 0 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
A threat actor's playbook for exploiting the npm ecosystem was exposed on the dark web, detailing how to build a blockchain-powered botnet.
Security News
NVD’s backlog surpasses 20,000 CVEs as analysis slows and NIST announces new system updates to address ongoing delays.
Security News
Research
A malicious npm package disguised as a WhatsApp client is exploiting authentication flows with a remote kill switch to exfiltrate data and destroy files.