Usage
var kernelBetainc = require( '@stdlib/math-base-special-kernel-betainc' );
kernelBetainc( x, a, b, regularized, upper )
Evaluates the incomplete beta function and its first derivative for parameters x
, a > 0
and b > 0
. The regularized
and upper
boolean parameters are used to specify whether to evaluate the regularized or non-regularized and the upper or lower incomplete beta functions, respectively.
var out = kernelBetainc( 0.8, 1.0, 0.3, false, false );
out = kernelBetainc( 0.2, 1.0, 2.0, true, false );
out = kernelBetainc( 0.2, 1.0, 2.0, true, true );
If provided NaN
for x
, a
, or b
, the function returns [ NaN, NaN ]
.
var out = kernelBetainc( NaN, 1.0, 1.0, true, true );
out = kernelBetainc( 0.8, NaN, 1.0, true, true );
out = kernelBetainc( 0.8, 1.0, NaN, true, true );
If x
is outside the interval [0,1]
, the function returns [ NaN, NaN ]
.
var out = kernelBetainc( 1.5, 1.0, 1.0, true, true );
out = kernelBetainc( -0.5, 1.0, 1.0, true, true );
If a
or b
is negative, the function returns [ NaN, NaN ]
.
var out = kernelBetainc( 0.5, -2.0, 2.0, true, true );
out = kernelBetainc( 0.5, 2.0, -2.0, true, true );
kernelBetainc.assign( x, a, b, regularized, upper, out, stride, offset )
Evaluates the incomplete beta function and its first derivative for parameters x
, a > 0
and b > 0
and assigns results to a provided output array.
var Float64Array = require( '@stdlib/array-float64' );
var out = new Float64Array( 2 );
var v = kernelBetainc.assign( 0.2, 1.0, 2.0, true, true, out, 1, 0 );
var bool = ( v === out );
The offset
parameter specifies the index of the first output array element, and the stride
parameter specifies the stride length between consecutive output array elements.
Examples
var randu = require( '@stdlib/random-base-randu' );
var kernelBetainc = require( '@stdlib/math-base-special-kernel-betainc' );
var out;
var i;
var x;
var a;
var b;
out = [ 0.0, 0.0 ];
for ( i = 0; i < 100; i++ ) {
x = randu();
a = randu() * 10.0;
b = randu() * 10.0;
kernelBetainc( x, a, b, true, false, out, 1, 0 );
console.log( 'x: %d, \t a: %d, \t b: %d, \t f(x,a,b): %d, \t f^1(x,a,b): %d', x.toFixed( 4 ), a.toFixed( 4 ), b.toFixed( 4 ), out[ 0 ].toFixed( 4 ), out[ 1 ].toFixed( 4 ) );
}